GENERALNA DYREKCJA DRÓG KRAJOWYCH I AUTOSTRAD

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH

M-13.01.00
v03

BETON KONSTRUKCYJNY
W DROGOWYCH OBIEKTACH INŻYNIERSKICH

(dokument wzorcowy)

Warszawa
30 września 2019
Opracowano
w Departamencie Technologii Budowy Dróg GDDKiA
we współpracy
z Laboratoriami Drogowymi GDDKiA

Nazwa zadania, np.: Budowa drogi ekspresowej S.. na odcinku ... – ... od km 00+000.00 do km 15+601.99 wraz
z obwodnicą ... w ciągu DK.. od km 00+000.00 do km 4+041.04
SPIS TREŚCI

1. WSTĘP ... 5
 1.1. Nazwa zadania .. 5
 1.2. Przedmiot WWiORB ... 5
 1.3. Zakres stosowania WWiORB ... 5
 1.4. Informacje ogólne o terenie budowy .. 5
 1.5. Zakres robót objętych WWiORB .. 5
 1.6. Określenia podstawowe ... 6

2. MATERIAŁY .. 9
 2.1. Wymagania ogólne dotyczące materiałów .. 9
 2.2. Wymagania dotyczące betonu konstrukcyjnego .. 11
 2.3. Składniki mieszanki betonowej .. 13
 2.4. Skład i właściwości mieszanki betonowej .. 22

3. SPRZĘT .. 27
 3.1. Wymagania ogólne dotyczące sprzętu ... 27
 3.2. Wytwórnia mieszanki betonowej ... 27
 3.3. Warunki prowadzenia produkcji ... 28

4. TRANSPORT ... 28
 4.1. Wymagania ogólne dotyczące transportu .. 28
 4.2. Transport i przechowywanie cementu ... 28
 4.3. Transport i przechowywanie kruszyw .. 29
 4.4. Transport i przechowywanie domieszek i dodatków .. 29
 4.5. Ogólne zasady transportu mieszanki betonowej .. 29

5. WYKONANIE ROBÓT ... 30
 5.1. Wymagania ogólne .. 30
 5.2. Zalecenia ogólne ... 30
 5.3. Zakres robót ... 31

6. KONTROLA JAKOŚCI ROBÓT .. 47
 6.1. Ogólne wymagania dotyczące kontroli jakości robót ... 47
 6.2. Badania i pomiary Wykonawcy ... 48
 6.3. Badania i pomiary kontrolne ... 48
 6.4. Badania i pomiary kontrolne dodatkowe .. 48
 6.5. Badania i pomiary arbitrażowe ... 48
 6.6. Badania przed przystąpieniem do robót .. 49
 6.7. Kontrola deskowań i rusztowań ... 49
 6.8. Badania składników mieszanki betonowej ... 50
7. OBMIAR ROBÓT .. 58
 7.1. Ogólne zasady obmiaru robót 58
 7.2. Jednostka obmiarowa ... 58
8. ODBIÓR ROBÓT .. 58
 8.1. Zasady postępowania z wadliwie wykonanymi robotami 58
9. PODSTAWA PŁATNOŚCI .. 59
 9.1. Ogólne ustalenia dotyczące podstawy płatności 59
10. PRZEPISY ZWIĄZANE .. 60
 10.1. Normy ... 60
 10.2. Inne dokumenty .. 62
1. WSTĘP

1.1. Nazwa zadania

„...” - przytoczyć

1.2. Przedmiot WWiORB

Przedmiotem niniejszych Warunków Wykonania i Odbioru Robót Budowlanych (WWiORB) są wymagania, dotyczące wykonania i odbioru robót budowlanych związanych z wykonaniem oraz ułożeniem betonu konstrukcyjnego w monolitycznych drogowych obiektach inżynierskich zgodnie z zapisami określonymi w WWiORB D-M-00 „Wymagania ogólne”, z zastosowaniem mieszanek betonowych wibrowanych, jak i samozagęszczalnych SCC.

1.3. Zakres stosowania WWiORB

WWiORB są stosowane jako dokument przetargowy i kontraktowy przy zlecaniu i realizacji robót na drogach krajowych. WWiORB stanowią podstawę opracowania Specyfikacji Technicznych Wykonania i Odbioru Robót Budowlanych (STWiORB).

1.4. Informacje ogólne o terenie budowy

„...” - przytoczyć

1.5. Zakres robót objętych WWiORB

Ogólne wymagania dotyczące robót podano w WWiORB D-M-00.00.00 "Wymagania Ogólne".

Ustalenia zawarte w niniejszych WWiORB dotyczą zasad prowadzenia robót związanych z wykonaniem i odbiorem betonu konstrukcyjnego oraz ułożenia go w monolitycznych elementach drogowych obiektów inżynierskich.

Projektowanie konstrukcji, produkcja betonu towarowego, transport mieszanki betonowej, wykonawstwo robót betonowych, kontrola betonu i kontrola robót betonowych powinny odbywać się według wzajemnie powiązanych ze sobą aktualnych norm zestawionych na schemacie przedstawionym na rys. 1.

Beton konstrukcyjny w monolitycznych i prefabrykowanych drogowych obiektach inżynierskich musi odpowiadać następującym wymaganiom:

- specyfikacji projektowej (opracowanej przez projektanta konstrukcji),
- opracowanemu przez Wykonawcę na podstawie specyfikacji projektowej zamówieniu na beton (nazwanego w normie PN-EN 206 [5] specyfikacją betonu),
- przepisom dotyczącym wprowadzania wyrobów budowlanych do obrotu i stosowania, tzn. ustawie z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (Dz. U. z 2019 r. poz. 266, z późn. zm.) i Rozporządzeniu Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016r. w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. poz. 1966, z późn. zm.)
- Rozporządzenia Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 r. w sprawie warunków technicznych, jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie (Dz.U. nr 63, poz. 735, z późn. zm.).

Niniejsze WWiORB nie dotyczą betonu konstrukcyjnego stosowanego w technologii głębokiego fundamentowania do drogowych obiektów inżynierskich oraz betonu stosowanego do nawierzchni betonowej jezdni drogowych obiektów mostowych.
Rys. 1. Schemat zależności pomiędzy normą wyrobu PN-EN 206 a normami dotyczącymi projektowania i wykonywania konstrukcji betonowych, oraz normami dotyczącymi składników i badań betonu

1.6. Określenia podstawowe

Beton - materiał powstały ze zmieszania cementu, kruszywa grubego i drobnego, wody oraz ewentualnych domieszek i dodatków, który uzyskuje swoje właściwości w wyniku hydratacji cementu.

Beton konstrukcyjny - beton zwykły według PN-EN 206 w monolitycznych oraz prefabrykowanych elementach drogowego obiektu inżynierskiego o wytrzymałości na ściskanie nie mniejszej niż C20/25 (beton zwykły) lub LC25/28 (beton lekki) i o dodatkowych ustalonych właściwościach.

Beton konstrukcyjny napowietrzony - beton wykonany z użyciem domieszki napowietrzającej, o wymaganej zawartości powietrza w mieszance oraz zawartości powietrza w stwardniałym betonie co najmniej 3,5%.

Beton projektowany - beton, którego wymagane właściwości i ewentualne dodatkowe cechy są podane producentowi, odpowiedzialnemu za dostarczenie betonu zgodnego z wymaganymi właściwościami i dodatkowymi cechami.

Beton recepturowy (o ustalonym składzie) - beton, którego skład i składniki, jakie powinny być użyte, są podane producentowi odpowiedzialnemu za dostarczenie betonu o tak określonym składzie.

Beton stwardniały - beton, który jest w stanie stałym i który osiągnął pewną wytrzymałość.
Beton zwykły - beton o gęstości w stanie suchym większej niż 2000 kg/m³, ale nie przekraczającej 2600 kg/m³.

Beton samozagęszczalny SCC (z ang. self compacting concrete) – beton, który pod własnym ciężarem rozpyla się i zagęszcza, wypełnia deskowanie ze zbrojeniem, kanały, ramy itp., zachowując jednorodność.

Dodatki pucolanowe i/lub pucolanowo-hydrauliczne SCM (z ang. supplementary cementitious materials) – dodatki dodawane do składu betonu, takie jak:
- granulowany żużel wielkopiecowy,
- popiół lotny krzemionkowy,
- pył krzemionkowy.

Domieszka – substancja modyfikująca, dodawana podczas wykonywania mieszanki betonowej w ilości nie przekraczającej 5% masy cementu w betonie.

Domieszka napowietrzająca – domieszka umożliwiająca wprowadzenie podczas mieszania określonej ilości drobnych, równomiernie rozmieszczonych pęcherzyków powietrza, które pozostają w betonie stwardniałym.

Domieszka opóźniająca wiązanie – domieszka która przedłuża czas do rozpoczęcia przechodzenia mieszanki ze stanu plastycznego w stan sztywny.

Domieszka uplastyczniająca – domieszka, która umożliwia zmniejszenie zawartości wody w danej mieszance betonowej bez wpływu na jej konsystencję lub która bez zwiększania ilości wody powoduje zwiększenie opadu stożka/rozpyłu lub wywołuje oba te efekty jednocześnie.

Domieszka upłynniająca – domieszka, która umożliwia znaczne zmniejszenie zawartości wody w danej mieszance betonowej bez wpływu na jej konsystencję lub która bez zmniejszania ilości wody powoduje znaczne zwiększenie opadu stożka/rozpyłu lub wywołuje oba te efekty jednocześnie.

Efektywna zawartość wody – różnica pomiędzy całkowitą ilością wody w mieszance betonowej a ilością wody zaabsorbowanej przez kruszywo.

Współczynnik woda/cement – stosunek wagowy efektywnej zawartości wody do zawartości cementu w mieszance betonowej.

Kategoria środowiska – klasifikacja środowiska (E1 – E3) wg CEN/TR 16349 w odniesieniu do możliwości wystąpienia w betonie zagrożenia destrukcyjną reakcją alkalia-kruszywa AAR. Wyróżnia się kategorie:
- E1: beton jest zasadniczo chroniony przed wilgocią z zewnątrz,
- E2: beton jest wystawiony na działanie wilgoci z zewnątrz;
- E3: beton narażony jest na działanie wilgoci z zewnątrz i dodatkowo na czynniki obciążające, takie jak środki odladzające, zamrażanie i rozmrażanie (lub zwilżanie i suszenie w środowisku morskim) lub zmienne obciążenia.

Klasa ekspozycji – klasifikacja chemicznych i fizycznych warunków środowiska, na działanie których może być narażony beton zgodnie z PN-EN 206.

Klasy konsystencji – konsystencję mieszanki betonowej klasifikuje się zgodnie z PN-EN 206 oraz PN-B—06265 w zależności od metody oznaczenia:
- klasy S1-S5 wg metody opadu stożka zgodnie z PN-EN 12350-2,
klasy C0-C4 wg metody stopnia zagęszczalności zgodnie z PN-EN 12350-4,
klasy F1-F6 wg metody rozpywu zgodnie z PN-EN 12350-5,
klasy SF1-SF3 wg metody rozpywu stożka zgodnie z PN-EN 12350-8.

W przypadku mieszanki samozagęszczalnej SCC stosuje się wyłącznie klasy wg metody rozpywu stożka (klasy SF1 - SF3).

Klasy dodatkowych właściwości SCC – beton samozagęszczalny klasyfikuje się ze względu na dodatkowe właściwości zgodnie z PN-EN 206:

- lepkość - klasy VS1-VS2 wg metody rozpywu stożka zgodnie z PN-EN 12350-8 lub klasy VF1-VF2 wg metody V-lejka zgodnie z PN-EN 12350-9,
- przepływalność - klasy PL1-PL2 wg metody L-pojemnika zgodnie z PN-EN 12350-10 lub PJ1-PJ2 wg metody J-pierścienia zgodnie z PN-EN 12350-12,
- odporność na segregację - klasy SR1-SR2 wg metody segregacji sitowej zgodnie z PN-EN 12350-11.

Klasa obiektu – klasyfikacja (S1-S4) zgodnie z AASHTO R 80-17 konstrukcji budowlanych i inżynierskich w odniesieniu do wagi konsekwencji wystąpienia reakcji alkalia-kruszywa w betonie, uzależniona od znaczenia danego obiektu budowlanego, projektowanego czasu użytkowania i oczekiwanej poziomie niezawodności; klasa obiektu jest związana z konsekwencjami ekonomicznymi, społecznymi i środowiskowymi wystąpienia uszkodzeń AAR.

Klasa wytrzymałości betonu na ściskanie - symbol literowo-liczbowy np. C30/37 klasyfikujący beton pod względem jego wytrzymałości na ściskanie; klasy wytrzymałości na ściskanie betonu według PN-EN 206 określane są na podstawie wytrzymałości charakterystycznej na ściskanie w 28 dniu dojrzewania lub w czasie równoważnym na próbkach walcowych o średnicy 150 mm i wysokości 300 mm ($f_{ck,cyl}$) lub na próbkach sześciennych o boku 150 mm ($f_{ck,cube}$) pielęgnowanych zgodnie z PN-EN 12390-2.

Miejsce dostawy betonu konstrukcyjnego napowietrzonego – miejsce wylotu mieszanki z pompy lub miejsce rozładunku mieszanki z betonowozu, gdy nie stosuje się pompowania.

Mieszanka betonowa - całkowicie wymieszane składniki betonu, które są jeszcze w stanie umożliwiającym zagęszczenie wybraną metodą.

Oddziaływanie środowisk - oddziaływania chemiczne i fizyczne, wpływające na beton, lub na zbrojenie, lub inne znajdujące się w nim elementy metalowe, które w projekcie konstrukcyjnym nie zostały uwzględnione jako obciążenia.

Odporność na penetrację wody – maksymalna głębokość penetracji wody pod ciśnieniem określona zgodnie z normą PN-EN 12390-8.

Reakcja AAR (z ang. *Alkali-Aggregate Reaction*) - reakcja chemiczna zachodząca w betonie pomiędzy alkaliami (sodem i potasem występującymi w postaci kationów) pochodzącymi z cementu lub innych źródeł, jonami wodorotlenowymi oraz reaktywnymi składnikami niektórych kruszyw.

Reaktywność alkaliczna kruszywa - podatność kruszywa na reakcję z alkaliami.

Kategoria reaktywności kruszywa – sklasyfikowana podatność kruszywa na reakcję z wodorotlenkami sodu i potasu w betonie cementowym, ASR. Kategorie reaktywności:

- R0 kategoria 0 reaktywności kruszywa (kruszywo niereaktywne),
- R1 kategoria 1 reaktywności kruszywa (kruszywo umiarkowanie reaktywne),
- R2 kategoria 2 reaktywności kruszywa (kruszywo silnie reaktywne),
- R3 kategoria 3 reaktywności kruszywa (kruszywo bardzo silnie reaktywne).

Stopień mrozooporności - symbol literowo-liczbowy (np. F200) klasyfikujący beton pod względem jego odporności na działanie mrozu; liczba po literze F oznacza wymaganą liczbę cykli zamrażania i odmrażania próbek betonowych, sposób badania wg PN-B-06265.

Specyfikacja betonu – podane producentowi końcowe zestawienie udokumentowanych wymagań technicznych dotyczących właściwości użytkowych lub składu betonu.

Badanie zgodności i ocena zgodności – badanie wykonywane przez producenta w celu oceny zgodności betonu, czyli systematycznej kontroli stopnia, w jakim wyrób spełnia wyspecyfikowane wymagania.

Badanie identyczności – badanie mające na celu określenie, czy wytypowane zaroby lub ładunki pochodzą z odpowiedniej populacji o potwierdzonej zgodności.

Element masywny – konstrukcja, dla której moduł powierzchniowy M < 3 (M = Fc/V – dla elementów krępych, gdzie: Fc – powierzchnia strat ciepła [m²], V – objętość masy betonowej [m³]; M jest mniejsze od 3 dla płyt o grubości większej niż 0,6 m, M jest mniejsze od 3 dla słupów o przekroju większym niż 0,50x0,50 m).

Pozostałe definicje i określenia podano w WWiORB D-M-00.00.00. "Wymagania ogólne", oraz w przepisach związanych wyszczególnionych w pkt. 10 niniejszego WWiORB.

2. MATERIAŁY

2.1. Wymagania ogólne dotyczące materiałów

Wymagania ogólne dotyczące materiałów, ich pozyskiwania i składowania podano w WWiORB D-M-00.00.00. "Wymagania ogólne".

Do betonu konstrukcyjnego należy stosować materiały dopuszczone do obrotu i stosowania. Należy stosować materiały, które są oznakowane znakiem CE lub znakiem B i dla których Wykonawca (Producent) przedstawi Deklarację Właściwości Użytkowych (DWU) lub Krajową Deklarację Właściwości Użytkowych (KDWU), odniesione do Europejskiej Normy zharmonizowanej (ENh), Polskiej Normy wyrobu (PN), Europejskiej Oceny Technicznej (EOT) lub Krajowej Oceny Technicznej (KOT).

Przy wyborze materiałów do wbudowania, należy uwzględnić zapisy podane w Tabeli 1 i 2 w odniesieniu do danej klasy obiektu S1-S4 oraz kategorii środowiska E1-E3.

Zgodnie z założeniem Wytycznych [12], że nie dopuszcza się do stosowania kruszyw podatnych na reakcję alkalia-węglany, pojęcie akceptowalności szkodliwych efektów reakcji alkalia-kruszywo jest ograniczone wyłącznie do efektów reakcji alkalia-krzemionka.
Tabela 1. Klasyfikacja obiektów budowlanych i inżynierskich w zależności od konsekwencji wystąpienia szkodliwych efektów reakcji alkalia-kruszywa na podstawie AASHTO R 80-17 po dostosowaniu do warunków krajowych, zgodnie z Wytycznymi [12]

<table>
<thead>
<tr>
<th>Klasa obiektu</th>
<th>Konsekwencje wystąpienia reakcji AAR</th>
<th>Akceptowalność szkodliwych efektów AAR</th>
<th>Przykłady</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Pomijalne konsekwencje ekonomiczne, w zakresie bezpieczeństwa lub ochrony środowiska</td>
<td>Pewne ryzyko uszkodzenia wskutek AAR można tolerować</td>
<td>Elementy konstrukcji tymczasowych o projektowanym okresie eksploatacji do 5 lat Nienośne elementy konstrukcji wewnątrz budynków.</td>
</tr>
<tr>
<td>S2</td>
<td>Nieznaczne konsekwencje ekonomiczne, w zakresie bezpieczeństwa lub ochrony środowiska</td>
<td>Akceptowalne umiarkowane ryzyko uszkodzeń wskutek AAR</td>
<td>Elementy konstrukcji, które można łatwo wymienić, np. chodniki, krawężniki, ścieki.</td>
</tr>
<tr>
<td>S3</td>
<td>Znaczące konsekwencje ekonomiczne, w zakresie bezpieczeństwa lub ochrony środowiska</td>
<td>Akceptowalne niewielkie ryzyko uszkodzeń wskutek AAR</td>
<td>Obiekty o projektowanym okresie eksploatacji do 50 lat, np.: – nawierzchnie dróg lokalnych i o mniejszym znaczeniu; – ściany oporowe, fundamenty, bariery autostradowe; – drogowe obiekty o trwałości < 50 lat*</td>
</tr>
<tr>
<td>S4</td>
<td>Bardzo poważne konsekwencje ekonomiczne, w zakresie bezpieczeństwa lub ochrony środowiska</td>
<td>Nietolerowane żadne ryzyko uszkodzenia wskutek AAR</td>
<td>Obiekty o projektowanym czasie eksploatacji powyżej 50 lat, np.: – drogowe obiekty mostowe i tunele*,*; – nawierzchnie dróg o wysokiej jakości, dróg klasy A, S i GP; – obiekty energetyki jądrowej; – zapory wodne; – rewiralgiczne elementy konstrukcji bardzo trudne do wymiany lub naprawy.</td>
</tr>
</tbody>
</table>

* zgodnie z Rozporządzeniem w sprawie warunków technicznych, jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie (Dz.U. 2000 nr 63, poz. 735)
*** zgodnie z PN-EN 1990 orientacyjny projektowy okres użytkowania mostów i innych konstrukcji inżynierskich wynosi do 100 lat.
Tabela 2. Kategorie oddziaływań środowiskowych zgodnie z CEN/TR 16349 i RILEM AAR 7.1

<table>
<thead>
<tr>
<th>Kategoria środowiska</th>
<th>Opis środowiska</th>
<th>Ekspozycja elementów obiektu z betonu</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1*</td>
<td>Środowisko suche, chronione przed wilgocią zewnętrzną¹)</td>
<td>- elementy wewnętrzne w budynkach w środowisku suchym.</td>
</tr>
<tr>
<td>E2</td>
<td>Środowisko wilgotne bez oddziaływania agresywnego czynników zewnętrznych²)</td>
<td>- elementy wewnętrzne w budynkach o wysokiej wilgotności;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- elementy wystawione na działanie wilgoci z powietrza, nieagresywnych wód podziemnych, zanurzone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>w wodzie słodkiej lub stale zanurzone w wodzie morskie;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- wewnętrzne elementy masywne.</td>
</tr>
<tr>
<td>E3</td>
<td>Środowisko wilgotne z agresywnym oddziaływaniem czynników zewnętrznych³)</td>
<td>- elementy wystawione na działanie soli odmrażających;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- elementy wystawione na cykliczne działanie wody morskiej (zanurzanie i suszenie) lub słony oprysk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(strefy rozbryzgu);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- wilgotne elementy wystawione na naprzemienną działanie zamarzania i rozmarzania;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- wilgotne elementy wystawione na długotrwałe działanie wysokiej temperatury;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- jezdnie drogowe poddane obciążeniom zmęczeniowym.</td>
</tr>
</tbody>
</table>

*) Kategoria środowiska E1 nie ma zastosowania do betonowych nawierzchni drogowych i drogowych obiektów inżynierskich
Objaśnienia:
1) Suche środowisko odpowiada otoczeniu o średniej wilgotności względnej, niższej niż 75% (warunki panujące zazwyczaj wewnątrz budynków), gdzie nie dochodzi do ekspozycji wilgoci z zewnątrz.
2) We wnętrzu betonowych elementów masywnych utrzymuje się wysoka wilgotność, nawet gdy znajdują się w środowisku suchym.
3) Wystąpienie reakcji alkalia-kruszywo jest promowane w elementach wilgotnych, wystawionych na naprzemienną działanie mrozu z oddziaływaniem soli rozmrażających i równocześnie poddanych cyklicznym obciążeniom dynamicznym.

2.2. Wymagania dotyczące betonu konstrukcyjnego

Beton konstrukcyjny powinien mieć wytrzymałość określoną klasą wytrzymałości na ściskanie według PN-EN 206 zgodną z wymaganiami ustalonymi dla klas ekspozycji betonu według PN-EN 206 i PN-B-06265 oraz odpowiadać wymaganiom podanym w dokumentacji projektowej i niniejszych WWIORB.

Zadaniem projektanta jest zdefiniowanie wymagań dla betonu konstrukcyjnego, a wynikają one z wymiarowania konstrukcji oraz warunków środowiskowych, w jakich ta...
konstrukcja pracuje. Projektant powinien się opierać na normach do projektowania – Eurokodach.

Beton w elementach konstrukcji usytuowanych powyżej głębokości przemarzania gruntu, narażonych na agresywne oddziaływanie zamrażania /rozmrzażenia bez środków odladzających XF1 i XF3 albo ze środkami odladzającymi XF2 i XF4 powinien wykazywać odporność na działanie mrozu oznaczoną stopniem mrozoodporności wg PN-B-06265 nie mniejszą niż:
- F100 w klasie ekspozycji XF1,
- F150 w klasach ekspozycji XF2 i XF3,
- F200 w klasie ekspozycji XF4.

Beton w elementach konstrukcji narażonych na oddziaływanie agresji chemicznej i korozji wywołanej chlorkami powinien wykazywać odporność na penetrację wody pod ciśnieniem według PN-EN 12390-8 mierzonną maksymalną głębokością penetracji nie większą niż:
- 60 mm w klasie ekspozycji XA1,
- 50 mm w klasie ekspozycji XA2,
- 40 mm w klasie ekspozycji XA3, XS3, XD3.

W odniesieniu do klas ekspozycji beton i jego skład powinien spełniać wymagania Tabeli 3.

Tabela 3. Zalecane wartości graniczne dotyczące składu i właściwości betonu

<table>
<thead>
<tr>
<th>Oznaczenie klasy ekspozycji</th>
<th>Wartości graniczne składu betonu</th>
<th>Inne wymagania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maks. w/c ¹)</td>
<td>Min. zawartość cementu ¹) [kg]</td>
</tr>
<tr>
<td>Brak ryzyka korozji lub brak oddziaływania X0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korozja wywołana carbonatyzacją XC</td>
<td></td>
</tr>
<tr>
<td>XC1</td>
<td>0,70</td>
<td>260</td>
</tr>
<tr>
<td>XC2</td>
<td>0,65</td>
<td>280</td>
</tr>
<tr>
<td>XC3</td>
<td>0,60</td>
<td>280</td>
</tr>
<tr>
<td>XC4</td>
<td>0,55</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Korozja wywołana chlorkami niepochodzącymi z wody morskiej XD</td>
<td></td>
</tr>
<tr>
<td>XD1</td>
<td>0,55</td>
<td>300</td>
</tr>
<tr>
<td>XD2</td>
<td>0,50</td>
<td>320</td>
</tr>
<tr>
<td>XD3</td>
<td>0,45</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>Korozja wywołana chlorkami pochodzącymi z wody morskiej XS</td>
<td></td>
</tr>
<tr>
<td>XS1</td>
<td>0,50</td>
<td>300</td>
</tr>
<tr>
<td>XS2</td>
<td>0,45</td>
<td>320</td>
</tr>
<tr>
<td>XS3</td>
<td>0,45</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>Korozja poprzez zamrażanie/rozmrzażanieXF</td>
<td></td>
</tr>
<tr>
<td>XF1</td>
<td>0,55</td>
<td>300</td>
</tr>
</tbody>
</table>

Nazwa zadania, np.: Budowa drogi ekspresowej S.. na odcinku ... – ... od km 00+000.00 do km 15+601.99 wraz z obwodnicą ... w ciągu DK.. od km 00+000.00 do km 4+041.04
2.3. Składniki mieszanki betonowej

2.3.1. Cement

Do wykonania betonu konstrukcyjnego w elementach obiektu drogowego powinny być stosowane następujące cementsy:

- cement portlandzki CEM I o całkowitej zawartości alkaliów Na$_2$O$_{eq}$ ≤ 0,80% według PN-EN 196-2, spełniający wymagania PN-EN 197-1;
- cement portlandzki niskoalkaliczny CEM I – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;
- cement portlandzki żużlowy CEM II/A-S o całkowitej zawartości alkaliów Na$_2$O$_{eq}$ ≤ 0,80% według PN-EN 196-2, spełniający wymagania PN-EN 197-1;
- cement portlandzki żużlowy niskoalkaliczny CEM II/A-S – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;
- cement portlandzki żużlowy CEM II/B-S o całkowitej zawartości alkaliów Na$_2$O$_{eq}$ ≤ 0,80 według PN-EN 196-2, spełniający wymagania PN-EN 197-1;
- cement portlandzki żużlowy CEM II/B-S – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;
- cement portlandzki żużlowy CEM III/A-S o całkowitej zawartości alkaliów Na$_2$O$_{eq}$ ≤ 0,80 według PN-EN 196-2, spełniający wymagania PN-EN 197-1;
- cement portlandzki żużlowy CEM III/A-S – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;
- cement portlandzki żużlowy CEM III/B-S o całkowitej zawartości alkaliów Na$_2$O$_{eq}$ ≤ 0,80 według PN-EN 196-2, spełniający wymagania PN-EN 197-1;
- cement portlandzki żużlowy CEM III/B-S – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;
- cement portlandzki żużlowy CEM IV/A-S o całkowitej zawartości alkaliów Na$_2$O$_{eq}$ ≤ 0,80 według PN-EN 196-2, spełniający wymagania PN-EN 197-1;
- cement portlandzki żużlowy CEM IV/A-S – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;
- cement portlandzki żużlowy CEM IV/B-S o całkowitej zawartości alkaliów Na$_2$O$_{eq}$ ≤ 0,80 według PN-EN 196-2, spełniający wymagania PN-EN 197-1;
- cement portlandzki żużlowy CEM IV/B-S – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;
- cement portlandzki żużlowy CEM V/A-S o całkowitej zawartości alkaliów Na$_2$O$_{eq}$ ≤ 0,80 według PN-EN 196-2, spełniający wymagania PN-EN 197-1;
- cement portlandzki żużlowy CEM V/A-S – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;
- cement portlandzki żużlowy CEM V/B-S o całkowitej zawartości alkaliów Na$_2$O$_{eq}$ ≤ 0,80 według PN-EN 196-2, spełniający wymagania PN-EN 197-1;
- cement portlandzki żużlowy CEM V/B-S – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;
cement portlandzki żużlowy niskoalkaliczny CEM II/B-S – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;

cement portlandzki popiołowy CEM II/A-V o całkowitej zawartości alkaliów Na₂Oeq ≤ 1,20% wg PN-EN 196-2, spełniający wymagania PN-EN 197-1;

cement portlandzki popiołowy niskoalkaliczny CEM II/A-V – NA, spełniający wymagania PN-EN 197-1 i PN-B – 19707;

cement portlandzki wapienny CEM II/A-L klasy wytrzymałościowej 42,5 i wyższej, o całkowitej zawartości alkaliów Na₂Oeq ≤ 0,80% wg PN-EN 196-2, spełniający wymagania PN-EN 197-1;

cement portlandzki wapienny niskoalkaliczny CEM II/A-L– NA klasy wytrzymałościowej 42,5 i wyższej, spełniający wymagania PN-EN 197-1 i PN-B – 19707.

Dopuszcza się również zastosowanie cementu CEM III/A-NA, z zastrzeżeniem, że dla elementów narażonych na oddziaływanie środowiska w klasie ekspozycji XF4 należy spełnić dodatkowe wymagania: klasa wytrzymałości cementu ≥ 42,5 lub klasa wytrzymałości cementu ≥ 32,5 R z zawartością granulowanego żużla wielkopiecowego ≤ 50 % (masowo).

Do betonu klasy wytrzymałości na ściskanie wyższej niż C30/37 powinien być stosowany cement klasy nie niższej niż 42,5.

Do wykonania betonu sprężonego w elementach drogowego obiektu inżynierskiego stosuje się cement CEM I.

Przy doborze cementu uwzględnia się:
- rodzaj, wymiary i technologię wykonania konstrukcji;
- warunki wykonania, pielęgnacji i dojrzewania betonu;
- agresywność środowiska, na które będzie narażona konstrukcja, w tym klasyfikację środowiska w odniesieniu do możliwości wystąpienia w betonie konstrukcyjnym zagrożenia destrukcyjną reakcją mineralów z wodorotlenkami sodu i potasu w cieczy porowej betonu.

2.3.1.1. **Stosowanie cementów specjalnych**

a) cementy o niskim cieple hydratacji L

Do wykonania betonu konstrukcyjnego w elementach masywnych drogowego obiektu inżynierskiego zaleca się stosowanie cementu o niskim cieple hydratacji (LH), zgodnym z PN-EN 197-1.

b) cementy odporné na siarczany SR/HSR

W przypadku podejścia wystąpienia agresji chemicznej (siarczanowej), należy stosować cementy odporné na siarczany SR wg PN-EN 197-1 lub HSR spełniające wymagania normy PN-B 19707, zalecane do stosowania w klasie ekspozycjiXA2 i XA3 w warunkach agresji siarczanowej wg PN-B 06265.

c) cementy niskoalkaliczne

W przypadkach niejednoznacznych wyników badań reaktywności kruszywa (wartości wyników w górnej granicy kategorii R0 lub w kategorii R1) należy stosować cementy specjalne niskoalkaliczne NA spełniające wymagania normy PN-B 19707.
2.3.2. Kruszywo

Do wykonania betonów należy stosować kruszywa naturalne pochodzenia mineralnego, które poza obróbką mechaniczną nie zostały poddane żadnej innej obróbce, których właściwości spełniają wymagania określone w normie PN-EN 12620, PN-EN 13043 i określone poniżej.

Przy doborze kruszywa do mieszanki betonowej należy uwzględniać zapisy zawarte w Wytycznych [12].

Procedura postępowania z kruszywami z przekruszenia surowca skalnego ze złóż polodowcowych i kruszywami ze skał węglanowych pochodzenia dewońskiego i starszymi, głębokomorskimi, została określona w Wytycznych [12].

W przypadku negatywnych wyników badań/nie spełnienia wymagań, ww. kruszywa i każdy element wykonany ich zastosowaniem zostanie usunięty z budowy na koszt Wykonawcy.

Do wykonania betonów nie dopuszcza się stosowania kruszyw:
- z recyklingu i z odzysku,
- węglanowych (nie dotyczy ww. kruszyw węglanowych pochodzenia dewońskiego i starszych, głębokomorskich) – do obiektów klasy S4.

Stosownie do wymagań normy PN-EN 206 przy doborze kruszywa do betonu do wykonania poszczególnych elementów obiektów uwzględnia się:
- realizację robót i przeznaczenie betonu,
- rodzaj, wymiary i technologię wykonania konstrukcji,
- warunki wykonania, pielęgnacji i dojrzewania betonu
- agresywność środowiska, na które będzie narażona konstrukcja,
- wymagania dodatkowe związane z kruszywem, w przypadku powierzchni o specjalnym wykończeniu, np. w przypadku betonu architektonicznego,
- projektowaną trwałość konstrukcji.

W drogowych obiektach inżynierskich należy stosować kruszywa mineralne niewykazujące szkodliwej reakcji z wodorotlenkami sodu i potasu w betonie.

Ocena kruszyw do betonu konstrukcyjnego w drogowych obiektach inżynierskich wymagana jest według Systemu Oceny i Weryfikacji Stałości Właściwości Użytkowych 2+.

Jako kruszywo grubo powinny być zastosowane kruszywa naturalne o maksymalnym wymiarze ziarna nie większym niż 31,5 mm spełniające wymagań podane w Tabeli 4.

Natomiast jako kruszywo drobne powinno być stosowane kruszywo o uziarnieniu nie większym niż 4 mm, spełniające wymagania podane w Tabeli 5.

Tabela 4. Wymagania dla kruszywa grubego

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Właściwość</th>
<th>Metoda badania</th>
<th>Wymagania</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uziarnienie w zależności od wymiaru kruszywa, kategoria nie niższa niż:</td>
<td>PN-EN 933-1</td>
<td>$G_c \geq 90/15$ w przypadku gdy wymiar $D/d > 2$ i $D > 11,2$ mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G_c \geq 85/20$ w przypadku gdy wymiar $D/d \leq 2$ lub $D \leq 11,2$ mm</td>
</tr>
<tr>
<td>2</td>
<td>Tolerancja uziarnienia na sitach pośrednich w zależności od wymiaru kruszywa, wymagana kategoria:</td>
<td>PN-EN 933-1</td>
<td>$G_T \leq 15$ w przypadku gdy $D/d \leq 4$ i sito pośrednie $D/1,4$ (G_T \leq 17,5) w przypadku gdy $D/d \geq 4$ i sito pośrednie $D/2$</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Zawartość pyłów; kategoria nie wyższa niż:</td>
<td>PN-EN 933-1</td>
<td>(f_{1,5})</td>
</tr>
<tr>
<td>4</td>
<td>Kształt kruszywa; kategoria nie wyższa niż:</td>
<td>PN-EN 933-3 lub PN-EN 933-4</td>
<td>(FL_{20}) lub (SI_{20})</td>
</tr>
<tr>
<td>5</td>
<td>Mrozooporność w 1 % NaCl; kategoria nie wyższa niż:</td>
<td>PN-EN 1367-6</td>
<td>(F_{\text{NaCl}6})</td>
</tr>
<tr>
<td>6</td>
<td>Odporność kruszywa na rozdrabnianie; kategoria nie wyższa niż:</td>
<td>PN-EN 1097-2</td>
<td>(LA_{25}) ²</td>
</tr>
<tr>
<td>7</td>
<td>Gęstość ziaren w stanie suchym</td>
<td>PN-EN 1097-6</td>
<td>deklarowana przez producenta</td>
</tr>
<tr>
<td>8</td>
<td>Gęstość nasypowa</td>
<td>PN-EN 1097-3</td>
<td>deklarowana przez producenta</td>
</tr>
<tr>
<td>9</td>
<td>Nasiąkliwość WA₂₄: wartość nie wyższa niż w %:</td>
<td>PN-EN 1097-6</td>
<td>1,2</td>
</tr>
<tr>
<td>10</td>
<td>Skład chemiczny - uproszczony opis petrograficzny</td>
<td>PN-EN 932-3</td>
<td>deklarowana przez producenta</td>
</tr>
<tr>
<td>11</td>
<td>Reaktywność alkaliczna; kategoria:</td>
<td>wg PB/1/18 i PB/2/18</td>
<td>R₀, w przypadku klasy obiektu S4 wg Tabeli 1</td>
</tr>
<tr>
<td>12</td>
<td>Zawartość siarczanów rozpuszczalnych w kwasie, nie wyższa niż kategoria:</td>
<td>PN-EN 1744-1</td>
<td>(AS_{0,2})</td>
</tr>
<tr>
<td>13</td>
<td>Zawartość siarki całkowitej; wartość nie wyższa niż w %:</td>
<td>PN-EN 1744-1</td>
<td>1,0</td>
</tr>
<tr>
<td>14</td>
<td>Zawartość chlorków rozpuszczalnych w wodzie; wartość nie wyższa niż w %:</td>
<td>PN-EN 1744-1</td>
<td>0,02</td>
</tr>
<tr>
<td>15</td>
<td>Lekkie zanieczyszczenia, wartość nie wyższa niż w %:</td>
<td>PN-EN 1744-1</td>
<td>0,1</td>
</tr>
<tr>
<td>16</td>
<td>Procentowa zawartość ziaren o powierzchni przekruszonej i łamaną oraz ziaren całkowicie zaokrąglonych; kategoria nie niższa niż:</td>
<td>PN-EN 933-5</td>
<td>(C_{100/0})</td>
</tr>
<tr>
<td>17</td>
<td>„Zgorzel słoneczna” bazaltu; kategoria:</td>
<td>PN-EN 1367-3 lub PN-EN 1097-2</td>
<td>(SB_{LA}) wymagania wobec kategorii (SB_{LA}): ubytek masy po gotowaniu (\leq 1 %),</td>
</tr>
</tbody>
</table>

⁴ Nazwa zadania, np.: Budowa drogi ekspresowej S.. na odcinku … – … od km 00+000.00 do km 15+601.99 wraz z obwodnicą … w ciągu DK.. od km 00+000.00 do km 4+041.04

Strona 16 z 62
wzrost współczynnika Los Angeles po gotowaniu ≤ 8 %

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Właściwość</th>
<th>Metoda badania</th>
<th>Wymagania</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Zawartość substancji organicznych</td>
<td>PN-EN 1744-1</td>
<td>barwa nie ciemniejsza niż wzorcowa</td>
</tr>
</tbody>
</table>

1) zawartość pyłów w tej kategorii należy ograniczyć do max. 1%, np. przez płukanie kruszywa przed sporządzeniem z niego mieszanki betonowej,
2) dopuszcza się stosowanie grubego kruszywa o kategorii LA35 pod warunkiem, że jego mrozoodporność, badana w 1% NaCl jest nie większa niż 2%,
3) w przypadku stwierdzenia, że badane kruszywo odpowiada kategorii R1 reaktywności (kruszywo umiarkowanie reaktywne – zwiększenie wymiarów liniowych beleczek z zaprawy kruszywa z cementem wg PB/1/18 w przedziale > 0,10 % (0,15 % dla kruszyw drobnych) i ≤ 0,30% długości), należy wykonać badanie dodatkowe zgodnie z PB/2/18; kruszywo dopuszcza się wtedy do zastosowania przy spełnieniu wymagań: reaktywność alkaliczna kruszywa z cementem nie wywołuje w jego wyniku zwiększenia wymiarów liniowych beleczek o więcej niż ≤ 0,04 %. W przypadku gdy ekspansja beleczek z zaprawy wg PB/1/18 wynosi > 0,10 % (0,15 % dla kruszyw drobnych) i ≤ 0,30 % i jednocześnie ekspansja beleczek z betonu wg PB/2/18 wynosi > 0,04 % i ≤ 0,12 %, kruszywo ocenia się jako umiarkowanie reaktywne R1 i może być ono stosowane dla klasy środowiska E2 i E3 wyłącznie przy ograniczonej zawartości alkaliów w betonie i przy zastosowaniu dodatków pucolanowo-hydraulicznych SCM. Dla klasy środowiska E2 i E3 nie mają zastosowania kruszywa silnie reaktywne R2 i bardzo silnie reaktywne R3.

Tabela 5. Wymagania dla kruszywa drobnego

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Właściwość</th>
<th>Metoda badania</th>
<th>Wymagania</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uziarnienie kruszywa, wymagana kategoria:</td>
<td>PN-EN 933-1</td>
<td>G, 85</td>
</tr>
<tr>
<td>2</td>
<td>Tolerancje typowego uziarnienia kruszywa deklarowanego przez producenta:</td>
<td>PN-EN 933-1</td>
<td>zgodne z załącznikiem C PN-EN 12620+A1:2010</td>
</tr>
<tr>
<td>3</td>
<td>Zawartość pyłów; kategoria nie wyższa niż:</td>
<td>PN-EN 933-1</td>
<td>f3 1)</td>
</tr>
<tr>
<td>4</td>
<td>Gęstość ziaren w stanie suchym</td>
<td>PN-EN 1097-6</td>
<td>deklarowana przez producenta</td>
</tr>
<tr>
<td>5</td>
<td>Gęstość nasypowa</td>
<td>PN-EN 1097-3</td>
<td>deklarowana przez producenta</td>
</tr>
<tr>
<td>6</td>
<td>Reaktywność alkaliczna; kategoria:</td>
<td>wg PB/1/18 i PB/2/18 R0, w przypadku klasy obiektu S4 wg Tabeli 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wg PB/1/18 i PB/2/18 R0 lub R1, w przypadku klasy obiektu S3 wg Tabeli 1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Zawartość siarczanów rozpuszczalnych w kwasie, nie wyższa niż kategoria:</td>
<td>PN-EN 1744-1</td>
<td>AS 0,2</td>
</tr>
<tr>
<td>8</td>
<td>Zawartość siarki całkowitej; wartość nie wyższa niż w %:</td>
<td>PN-EN 1744-1</td>
<td>1,0</td>
</tr>
<tr>
<td>9</td>
<td>Lekkie zanieczyszczenia, wartość nie wyższa niż w %:</td>
<td>PN-EN 1744-1</td>
<td>0,5</td>
</tr>
<tr>
<td>10</td>
<td>Zawartość substancji organicznych</td>
<td>PN-EN 1744-1</td>
<td>barwa nie ciemniejsza niż wzorcowa</td>
</tr>
</tbody>
</table>
1) zawartość pyłów w tej kategorii należy ograniczyć do max. 1,5 %, np. przez płukanie kruszywa przed sporządzeniem z niego mieszanki betonowej,

2) przypadku stwierdzenia, że badane kruszywo odpowiada kategorii R1 reaktywności (kruszywo umiarkowanie reaktywne – zwiększenie wymiarów liniowych beleczek z zaprawy kruszywa z cementem wg badania PB/1/18 w przedziale > 0,10 % (0,15 % dla kruszyw drobnych) i ≤ 0,30% długości), należy wykonać badanie dodatkowe zgodnie z PB/2/18; kruszywo dopuszcza się wtedy do zastosowania przy spełnieniu wymagania: reaktywność alkaliczna kruszywa z cementem nie wywołuje w jego wyniku zwiększenia wymiarów liniowych beleczek o więcej niż ≤ 0,04 %. W przypadku gdy ekspansja beleczek z zaprawy wg PB/1/18 wynosi > 0,10 % (0,15 % dla kruszyw drobnych) i ≤ 0,30 % i jednocześnie ekspansja beleczek z betonu wg PB/2/18 wynosi > 0,04 % i ≤ 0,12 %, kruszywo ocenia się jako umiarkowanie reaktywne R1 i może być ono stosowane dla klasy środowiska E2 i E3 wyłącznie przy ograniczonej zawartości alkaliów w betonie i przy zastosowaniu dodatków pucolanowo-hydraulicznych SCM. Dla klasy środowiska E2 i E3 nie mają zastosowania kruszywa silnie reaktywne R2 i bardzo silnie reaktywne R3.

2.3.2.1. Reaktywność alkaliczno–krzemionkowa kruszywa

Oznaczenie kategorii reaktywności alkalicznej kruszywa jest warunkiem koniecznym jego zastosowania w betonie konstrukcyjnym drogowych obiektów inżynierskich. Stosowanie do betonu kruszywa o nieznanej kategorii reaktywności alkalicznej jest wykluczone.

Klasyfikacja kruszywa ze względu na reaktywność oraz kryteria oceny reaktywności kruszywa w zależności od zastosowanej metody badawczej (PB/1/18 i PB/2/18) zostały przedstawione w Tabeli 6.

Tabela 6. Kategoryzacja reaktywności kruszyw do betonu

<table>
<thead>
<tr>
<th>Metoda badawcza</th>
<th>Kategoria reaktywności kruszywa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Niereaktywne R0</td>
</tr>
<tr>
<td></td>
<td>Umiekowanie reaktywne R1</td>
</tr>
<tr>
<td></td>
<td>Silnie reaktywne R2</td>
</tr>
<tr>
<td></td>
<td>Bardzo silnie reaktywne R3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metoda badawcza</th>
<th>Kategoria reaktywności kruszywa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedura badawcza GDDKiA PB/1/18 (metoda przyspieszona)</td>
<td>Wydłużenie próbek zaprawy po 14 dniach, %</td>
</tr>
<tr>
<td></td>
<td>≤ 0,15</td>
</tr>
<tr>
<td>Procedura badawcza GDDKiA PB/2/18 (metoda długoterminowa)</td>
<td>Wydłużenie próbek betonu po 365 dniach, %</td>
</tr>
<tr>
<td></td>
<td>≤ 0,04</td>
</tr>
</tbody>
</table>

UWAGA:
1) Jeżeli wyniki klasyfikacji na podstawie wyników przyśpieszonej metody pomiaru ekspansji zaprawy (wg PB/1/18) oraz długoterminowej metody pomiaru ekspansji betonu (wg PB/2/18) są niezgodne, to kategorię reaktywności badanego kruszywa przyjąć po zasięgnięciu opinii eksperta. Opinia eksperta powinna być
oparta m.in. o szczegółową analizę składu mineralogicznego kruszywa, w tym obecności składników reaktywnych wg PB/3/18, analizę metodyki i wyników wydłużenia próbek betonu i zaprawy, a także rozpoznanie produktów reakcji za pomocą odpowiednich metod mikroskopowych. W szczególnym przypadku kruszywa przeznaczonego do nawierzchni dróg o wysokiej jakości przy ocenie eksperckiej stosuje się procedurę PB/5/18.

2) W przypadku, gdy ekspansja próbek zaprawy oznaczona wg PB/1/18 po 14-dniach przekracza wartość 0,30 %, to bez względu na wyniki innych metod, kruszywa uważa się za silnie lub bardzo silnie reaktywne (kategoria reaktywności odpowiednio R2 i R3), co wyklucza stosowanie do wykonawstwa betonów przeznaczonych na nawierzchnie dróg i drogowe obiekty inżynierskie.

3) W przypadku, gdy ekspansja próbek betonu oznaczona wg PB/2/18 po 365 dniach przekracza wartość 0,12 %, to bez względu na wyniki innych metod, kruszywo uważa się za silnie lub bardzo silnie reaktywne R2 i R3, co wyklucza stosowanie do wykonawstwa betonów przeznaczonych na nawierzchnie dróg i drogowe obiekty inżynierskie.

W przypadku wyjątkowo odpowiedzialnych zastosowań kruszyw, np. do betonu w newralgicznych elementach obiektu mostowego o znaczeniu strategicznym, do których dostęp jest utrudniony, a wymiana lub naprawa jest niemożliwa, Inwestor lub Zarządca obiektu może zadeedykować o przyjęciu bardziej rygorystycznych kryteriów klasyfikacji reaktywności alkalicznej. Zaostrzone kryteria klasyfikacji stosują się do klasyfikacji kruszywa niereaktywnego R0 i mogą zostać przyjęte jako wydłużenie czasu pomiaru i/lub ograniczenie wydłużenia bełeczek zaprawy, np. do 0,10% po 28 dniach w 1M roztworze NaOH. Dostawy takiego kruszywa muszą być realizowane na warunkach umownych z producentem, określających szczególne wymagania odnośnie kryteriów klasyfikacji reaktywności alkalicznej.

a) analiza petrograficzna

b) metody badań ekspansji wywołanej reakcją ASR

Dla stosowanego kruszywa należy określić kategorię reaktywności metodami badań ekspansji wywołanej reakcją ASR na podstawie Wytycznych [12].

c) warunki zastosowania naturalnego kruszywa do betonu wg PN-EN 12620 ze względu na reaktywność (na podstawie Wytycznych [12])

Warunki zastosowania naturalnego kruszywa do betonu konstrukcyjnego w drogowych obiektach inżynierskich wg PN-EN 12620 dla obiektów klasy S4, S3, w kategoriach środowiska E2 i E3, oraz dla kategorii reaktywności kruszywa naturalnego R0, R1, R2, R3 podano w tabl. 7a i 7b. W przypadku drogowych obiektów inżynierskich kategoria oddziaływania środowiska E1 nie ma zastosowania. Wykluca się użycie kruszyw o kategorii reaktywności R2 i R3 w betonie konstrukcyjnym do budowy drogowych obiektów inżynierskich.
Tabela 7a. Warunki zastosowania naturalnego kruszywa do betonu w obiekcie klasy S4 w zależności od kategorii oddziaływania środowiska E oraz kategorii reaktywności kruszywa R

<table>
<thead>
<tr>
<th>Kategoria oddziaływania środowiska</th>
<th>Kategoria reaktywności kruszywa</th>
<th>zawartość Na₂Oₑq w 1 m³ betonu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Niereaktywne R₀</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Umiarkowanie reaktywne R₁</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silnie reaktywne R₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bardzo silnie reaktywne R₃</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>maks. 3,0 kg/m³</td>
<td>Kruszyw o takiej kategorii reaktywności nie dopuszcza się</td>
</tr>
<tr>
<td>E3</td>
<td>maks. 2,4 kg/m³</td>
<td></td>
</tr>
</tbody>
</table>

Uwaga:

Kruszyw grubych ze złoż żwirowych o genezie rzecznej lub polodowcowej nie dopuszcza się do stosowania w obiektach klasy S4, z uwagi na brak doświadczeń krajowych w tym zakresie oraz duże zróżnicowanie ich składu mineralogicznego.

Tabela 7b. Warunki zastosowania naturalnego kruszywa do betonu w obiekcie klasy S3 w zależności od kategorii oddziaływania środowiska E oraz kategorii reaktywności kruszywa R

<table>
<thead>
<tr>
<th>Kategoria oddziaływania środowiska</th>
<th>Kategoria reaktywności kruszywa</th>
<th>zawartość Na₂Oₑq w 1 m³ betonu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Niereaktywne R₀</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Umiarkowanie reaktywne R₁</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silnie reaktywne R₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bardzo silnie reaktywne R₃</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>bez ograniczeń</td>
<td>(i) maks. 2,4 kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) min. 20%FA albo min. 35%GGBS</td>
</tr>
<tr>
<td>E3</td>
<td>maks. 3,0 kg/m³</td>
<td>(i) maks. 1,8 kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) min. 20%FA albo min. 35%GGBS, wymagane potwierdzenie eksperta*</td>
</tr>
</tbody>
</table>

Kruszyw o takiej kategorii reaktywności nie dopuszcza się

FA – popiół lotny krzemionkowy wg PN-EN450-1:2012
GGBS – granulowany żużel wielkopiecowy wg PN-EN 15167-1:2007
* Potwierdzenie eksperta powinno być oparte m.in. o analizę wydłużenia próbek zapraw lub betonów wg PB/1/18 – PB/5/18, a także rozpoznanie produktów reakcji alkalia-krzemionka w betonie wg PB/3/18.
Wymaganą przy stosowaniu kruszyw umiarkowanie reaktywnych R1 obniżoną zawartość alkaliów Na₂Oₐq w betonie, zapewnia stosowanie cementów specjalnych niskoalkalicznych NA - zgodnych z PN-B-19707, w tym cementów portlandzkich CEM I-NA, cementów portlandzkich wieloskładnikowych CEM I-NA zawierających popiół lotny krzemionkowy, granulowany żużel wielkopiecowy lub wapien oraz cementu hutniczego CEM III/A-NA.

Wykonanie serii badań dla różnych stopni zastąpienia cementu CEM I dodatkiem mineralnym zgodnie z PB/4/18 pozwala oszacować ilość danego dodatku mineralnego w betonie, zabezpieczającą go przed wystąpieniem negatywnych skutków reakcji ASR.

Metody i częstotliwość badań kruszyw stosowanych do drogowych obiektów inżynierskich określają Wytyczne [12].

2.3.3. Woda

Woda zarobowa do betonu powinna odpowiadać wymaganiom normy PN-EN 1008. Stosowanie wody pitnej nie wymaga badań. Zabrania się stosowania wody z systemów recyklingu.

2.3.4. Domieszki do betonu

Do betonu konstrukcyjnego zaleca się stosowanie domieszek modyfikujących właściwości mieszaniki lub stwardniałego betonu, poprawiających właściwości betonu lub zapewniających uzyskanie specjalnych właściwości. Zawartość całkowita stosowanych domieszek do betonu powinna być zgodna z wymaganiami PN-EN 206 i PN-B-06265.

Przydatność domieszek do betonu powinna być ustalona na podstawie wymagań określonych w PN-EN 934-1 i PN-EN 934-2. W składzie i właściwościach stosowanych domieszek, z uwagi na trwałość betonu, szczególnie istotne są:

- zawartość chlorków rozpuszczalnych w wodzie,
- zawartość alkaliów,
- oddziaływanie korozjne.

Przy doborze domieszki należy uwzględnić jej kompatybilność z cementem i ewentualnym dodatkiem mineralnym (dodatkiem typu II). W przypadku stosowania więcej niż jednej domieszki kompatybilność tych domieszek należy sprawdzić w badaniach wstępnych betonu w czasie projektowania składu mieszanki betonowej.

Do betonu przeznaczonego do wykonania elementów narażonych na oddziaływanie środowiska w klasach ekspozycji: XF2, XF3, XF4 (cykliczne zamrażanie/rozmrażanie) stosuje się domieszkę napowietrzającą.

W przypadku zastosowania domieszki napowietrzającej wraz z inną domieszką lub z cementem zawierającym pozaklinkierowe składniki główne, należy potwierdzić ich kompatybilność w betonie napowietrzanym na podstawie charakterystyki porów powietrznych wg PN-EN 480-11 w odniesieniu do kryteriów zawartych w PN-EN 934-2.

Wtórne dozowanie domieszek na placu budowy może się odbywać wyłącznie za zgodą Inżyniera/Inspektora Nadzoru przez osobę przeszkoloną w zakresie dozowania domieszek. Opakowanie domieszki powinno posiadać etykietę wskazującą rodzaj domieszki i termin przydatności.

2.3.5. Dodatki typu II do betonu

Dodatki typu II do betonu mogą być stosowane według zasad określonych w normie PN-EN 206 i PN-B-06265.
Do betonu konstrukcyjnego dopuszcza się stosowanie:
- pyłu krzemionkowego według PN-EN 13263-1,
- popiołu lotnego zgodnego z PN-EN 450-1 (nie stosuje się do betonu konstrukcyjnego zagęszczanego mechanicznie).

Do betonu konstrukcyjnego powinno się stosować wyłącznie popiół lotny krzemionkowy kategorii A (zawartość straty prażenia ≤5%).

2.4. Skład i właściwości mieszanek betonowej

Skład mieszanki betonowej powinien być ustalony zgodnie z PN-EN 206. Producent betonu towarowego, na podstawie wymaganych właściwości i ewentualnych dodatkowych właściwości zdefiniowanych w zamówieniu (w PN-EN 206 określonym jako specyfikacja betonu) opracowuje skład betonu konstrukcyjnego. Ustalona receptura mieszanki betonowej powinna być przedstawiona Inżynierowi/Inspektorowi Nadzoru do zatwierdzenia wraz z Deklaracjami Właściwości Użytkowych poszczególnych składników mieszanki oraz wynikami badań wstępnych potwierdzającymi uzyskanie wymaganych właściwości mieszanki betonowej i betonu stwardniałego, wykonanych według zaleceń p. 9.5 normy PN-EN 206. Receptura powinna określać dla jakich klas ekspozycji betonu została opracowana. Receptura powinna być przedłożona z takim wyprzedzeniem czasowym, które umożliwi Laboratorium Zamawiającego na zlecenie Inżyniera/Inspektora Nadzoru sprawdzenie właściwości poszczególnych składników, mieszanki betonowej oraz betonu na podstawie zarobu laboratoryjnego i/lub próbnego. W przypadku braku zatwierdzenia recepty należy opracować nową recepturę.

Receptura ta powinna być zatwierdzona przez Inżyniera/Inspektora Nadzoru po przeprowadzeniu przez Laboratorium Zamawiającego, odpowiednich badań składników mieszanki betonowej i betonu oraz potwierdzeniu zgodności sprawdzanych właściwości z przyjętymi wymaganiami.

Przy ustalaniu składu betonu na etapie badań wstępnych średnia wytrzymałość na ściskanie f_{cm} próbek powinna być większa niż wytrzymałość charakterystyczna f_{ck} z zapasem niezbędnym dla spełnienia kryteriów zgodności podanych w PN-EN 206 p.8.2.1. Zaleca się, aby zapas był dwa razy większy niż przewidywane odchylenie standardowe i wynosił od 6 do 12 [MPa] ($f_{cm} \geq f_{ck} + 6 \div 12$ [MPa]), w zależności od technologii produkcji, składników oraz dostępnych informacji dotyczących zmienności, przy czym f_{ck} oznacza wytrzymałość charakterystyczną betonu na ściskanie oznaczoną na próbkach sześciennych.

Dopuszcza się na podstawie p. 6.1, p. 9.5 i załącznika A normy PN-EN 206, jako alternatywne względem badań wstępnych, opracowanie przez Producenta składu betonu na podstawie danych z wcześniejszych badań lub długookresowego doświadczenia z podobnym rodzajem betonu.

Również w takim przypadku Laboratorium Zamawiającego na zlecenie Inżyniera/Inspektora Nadzoru ma obowiązek przeprowadzić badania sprawdzające właściwości kruszyw użytych do betonu oraz właściwości mieszanki betonowej i betonu z zarobu próbnego. Na podstawie wyników badań sprawdzających Inżynier/Inspektor Nadzoru zatwierdza lub odrzuca opracowany przez Producenta skład betonu.

W przypadku betonu samozagęszczalnego SCC mieszanka betonowa powinna spełniać trzy podstawowe warunki:
- płynności, co zapewnia szybkie i dokładne wypełnienie formy i otulenie zbrojenia,
- zdolności do samoodpowietrzania, co oznacza samorzutne i szybkie odprowadzenie powietrza pod wpływem siły wyporu,
- stabilności (odporności na segregację).

2.4.1. Współczynnik woda/cement (w/c)

Współczynnik woda/cement (w/c), określany jako stosunek efektywnej zawartości wody do zawartości cementu w mieszance nie powinien być większy niż 0,45 w przypadku klasy wytrzymałości betonu C30/37 i wyższej lub nie większy niż 0,50 w przypadku betonu do klasy C25/30.

2.4.2. Zawartość cementu

Minimalna zawartość cementu w mieszance betonowej nie powinna być mniejsza niż wymagana, w zależności od klas ekspozycji betonu według PN-B-06265. Maksymalna zawartość cementu w mieszance betonowej nie powinna być większa niż:

- 400 kg/m³ dla betonu do klasy C25/30,
- 450 kg/m³ dla betonów klasy C30/37 i wyższych.

W przypadku betonu samozagęszczalnego (SCC) oraz w uzasadnionych przypadkach (za zgodą Inżyniera/Inspektora Nadzoru) dopuszcza się zmianę podanych zawartości cementu do 10%.

2.4.3. Zawartość chlorków

Zawartość chlorków w betonie nie powinna przekraczać maksymalnych wartości podanych w Tabeli 8.

Tabela 8. Maksymalna zawartość chlorków w betonie

<table>
<thead>
<tr>
<th>Zastosowanie betonu</th>
<th>Klasa zawartości chlorków a)</th>
<th>Maksymalna zawartość jonów Cl⁻ w odniesieniu do masy cementu b) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez zbrojenia stalowego lub innych elementów metalowych, z wyjątkiem uchwytów odpornych na korozję</td>
<td>CI 1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Ze zbrojeniem stalowym lub z innymi elementami metalowymi</td>
<td>CI 0,20</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>CI 0,40 c)</td>
<td>0,40</td>
</tr>
<tr>
<td>Ze stalowym zbrojeniem sprężającym, bezpośrednio stykającym się z betonem</td>
<td>CI 0,10</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>CI 0,20</td>
<td>0,20</td>
</tr>
</tbody>
</table>

a) Klasy zawartości chlorków odpowiednia w przypadku betonu o specjalnym zastosowaniu zależą od przepisów obowiązujących w miejscu stosowania betonu.

b) W przypadku stosowania dodatków oraz ich uwzględniania w masie cementu, zawartość chlorków wyraża się jako procentową zawartość jonów chlorkowych w odniesieniu do masy cementu wraz z całkowitą masą uwzględnianych dodatków.

c) W przypadku betonów zawierających cementy CEM III dopuszcza się różne klasy zawartości chlorków zgodnie z przepisami obowiązującymi w miejscu stosowania betonu.
2.4.4. Skład granulometryczny kruszywa

Maksymalny nominalny wymiar ziaren kruszywa należy dobierać uwzględniając otulinę zbrojenia oraz minimalną szerokość przekroju elementu. Ziarna kruszywa nie powinny być większe niż:

- 1/3 najmniejszego wymiaru przekroju poprzecznego elementu,
- 3/4 odległości w świetle między prętami zbrojenia leżącymi w jednej płaszczyźnie prostopadłej do kierunku betonowania.

Uziarnienie kruszywa do betonu ustala się doświadczalnie w czasie projektowania mieszanek betonowej.

Zawartość frakcji do 2 mm w mieszance kruszyw powinna być jak najmniejsza i jednocześnie zapewnić niezbędną urabialność mieszanek betonowej oraz nie powinna przekraczać:

a) przy zagęszczeniu mechanicznym przez wibrowanie:

- 42 % w przypadku mieszanki o uziarnieniu do 16,0 mm,
- 38 % w przypadku mieszanki o uziarnieniu do 22,4 mm,
- 37 % w przypadku mieszanki o uziarnieniu do 31,5 mm.

b) w przypadku betonu samozagęszczalnego:

- 50 % w przypadku mieszanki o uziarnieniu do 16,0 mm,
- 47 % w przypadku mieszanki o uziarnieniu do 22,4 mm.

Zalecane graniczne krzywe uziarnienia kruszywa do betonu konstrukcyjnego zagęszczanego mechanicznie i samozagęszczalnego podano w Tabeli 9 i Tabeli 10.

Tabela 9. Zalecane graniczne krzywe uziarnienia kruszywa do betonu konstrukcyjnego zagęszczanego mechanicznie

<table>
<thead>
<tr>
<th>Sito #, [mm]</th>
<th>Ułamek masowy kruszywa przechodzącego przez sito, [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wymiar kruszywa D ≤ 16,0 mm</td>
</tr>
<tr>
<td>0,25</td>
<td>3÷8</td>
</tr>
<tr>
<td>0,50</td>
<td>7÷20</td>
</tr>
<tr>
<td>1,0</td>
<td>12÷32</td>
</tr>
<tr>
<td>2,0</td>
<td>21÷42</td>
</tr>
<tr>
<td>4,0</td>
<td>36÷56</td>
</tr>
<tr>
<td>8,0</td>
<td>60÷76</td>
</tr>
<tr>
<td>16,0</td>
<td>100</td>
</tr>
<tr>
<td>22,4</td>
<td>-</td>
</tr>
<tr>
<td>31,5</td>
<td>-</td>
</tr>
</tbody>
</table>

Nazwa zadania, np.: Budowa drogi ekspresowej S.. na odcinku ... – ... od km 00+000.00 do km 15+601.99 wraz z obwodnicą ... w ciągu DK.. od km 00+000.00 do km 4+041.04

Strona 24 z 62
Tabela 10. Zalecane graniczne krzywe uziarnienia kruszywa do betonu konstrukcyjnego samozagęszczalnego

<table>
<thead>
<tr>
<th>Sito #, [mm]</th>
<th>Ułamek masowy kruszywa przechodzącego przez sito [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wymiar kruszywa</td>
</tr>
<tr>
<td></td>
<td>D ≤ 16,0 mm</td>
</tr>
<tr>
<td></td>
<td>D ≤ 22,4 mm</td>
</tr>
<tr>
<td>0,25</td>
<td>3 ÷ 12</td>
</tr>
<tr>
<td>0,50</td>
<td>7 ÷ 23</td>
</tr>
<tr>
<td>1,0</td>
<td>12 ÷ 38</td>
</tr>
<tr>
<td>2,0</td>
<td>21 ÷ 50</td>
</tr>
<tr>
<td>4,0</td>
<td>36 ÷ 60</td>
</tr>
<tr>
<td>8,0</td>
<td>60 ÷ 80</td>
</tr>
<tr>
<td>16,0</td>
<td>100</td>
</tr>
<tr>
<td>22,4</td>
<td>-</td>
</tr>
</tbody>
</table>

2.4.5. **Zawartość powietrza**

Zawartość powietrza w mieszance betonowej badana zgodnie z PN-EN 12350-7 nie powinna przekraczać wartości granicznych podanych w PN-B-06265 (Tabela 11).

Podczas próby technologicznej i kontroli jakości robót, zawartość powietrza w mieszance betonowej sprawdza się w miejscu dostawy betonu konstrukcyjnego napowietrzonego.

Tabela 11. Wartości graniczne zawartości powietrza w mieszance betonowej w przypadku stosowania domieszki napowietrzającej

<table>
<thead>
<tr>
<th>Wymiar kruszywa D, [mm]</th>
<th>Etap wykonywania badań</th>
<th>Tolerancja pomiarowa [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projektowanie składu mieszanki betonowej [%]</td>
<td>Zatwierdzanie receptury, próba technologiczna, kontrola jakości robót [%]</td>
</tr>
<tr>
<td>16,0</td>
<td>4,5 ÷ 6,0</td>
<td>4,5 ÷ 6,5</td>
</tr>
<tr>
<td>22,4</td>
<td>4,0 ÷ 5,5</td>
<td>4,0 ÷ 6,0</td>
</tr>
<tr>
<td>31,5</td>
<td>4,0 ÷ 5,5</td>
<td>4,0 ÷ 6,0</td>
</tr>
</tbody>
</table>

Przyjęta zawartość powietrza w mieszance betonowej jest ustalona na etapie zatwierdzania receptury przez Inżyniera/Inspektora Nadzoru.
2.4.6. Konsystencja mieszanki betonowej

Konsystencja mieszanki betonowej powinna być dostosowana do warunków zagęszczenia i zabudowy, tzn. wymiarów przekroju elementu, objętości elementu, zagęszczenia i układu prętów zbrojeniowych. Dobierając konsystencję uwzględnić należy również warunki i możliwości technologiczne Wykonawcy, w tym przede wszystkim rodzaj zastosowanego deskowania (lub form), rodzaj, wydajność i liczbę urządzeń zagęszczających (wibratory głębne, wibratory przyczepne, wibratory powierzchniowe, itp.), a także urządzeń do powierzchniowego wykańczania betonu (rodzaj i wydajność zacierczek mechanicznych).

Konsystencja mieszanki betonowej powinna być określona poprzez klasę wg metody opadu stożka zgodnie z PN-EN 12350-2 – Tabela 12a lub metody rozpływu stożka zgodnie z PN-EN 12350-8 – Tabela 12b. Dopuszcza się także określenie konsystencji mieszanki betonowej poprzez zdefiniowanie założonej wartości opadu stożka w mm. Klasa konsystencji mieszanki betonowej powinna zostać ustalona na etapie zatwierdzania receptury przez Inżyniera/Inspektora Nadzoru.

Tabela 12a. Klasy konsystencji mieszanki betonowej wg metody opadu stożka

<table>
<thead>
<tr>
<th>Klasa konsystencji</th>
<th>Opad stożka badany zgodnie z PN-EN 12350-2 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>10 do 40</td>
</tr>
<tr>
<td>S2</td>
<td>50 do 90</td>
</tr>
<tr>
<td>S3</td>
<td>100 do 150</td>
</tr>
<tr>
<td>S4</td>
<td>160 do 210</td>
</tr>
<tr>
<td>S5 (^a))</td>
<td>⩾ 220</td>
</tr>
</tbody>
</table>

\(^a\) ze względu na brak czułości metody opadu stożka poza pewnymi wartościami konsystencji, zaleca się stosowanie tej metody badań w następującym zakresie ⩾ 10 mm i ≤ 210 mm

Tabela 12b. Klasy konsystencji mieszanki betonowej SCC wg metody rozpływu stożka

<table>
<thead>
<tr>
<th>Klasa konsystencji</th>
<th>Rozpływ stożka badany zgodnie z PN-EN 12350-8 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF1</td>
<td>550 do 650</td>
</tr>
<tr>
<td>SF2</td>
<td>660 do 750</td>
</tr>
<tr>
<td>SF3</td>
<td>760 do 850</td>
</tr>
</tbody>
</table>

UWAGA:
Klasyfikacji nie stosuje się do betonu z kruszywem o \(D_{\text{max}}\) większym niż 40 mm
3. **SPRZĘT**

3.1. **Wymagania ogólne dotyczące sprzętu**

Wymagania ogólne dotyczące sprzętu podano w WWiORB D-M-00.00.00. "Wymagania ogólne".

3.2. **Wytwórnia mieszanki betonowej**

Mieszanka betonowa powinna być produkowana w zautomatyzowanych wytwórniach zapewniających:

- dokładność dozowania poszczególnych składników,
- dokonywanie pomiaru wilgotności kruszyw z automatyczną korektą dozowanej wody zarobowej do mieszanki,
- równomierne rozprowadzenie składników,
- uzyskanie jednorodnej konsystencji.

Jeżeli przewiduje się produkcję mieszanki w warunkach zimowych, wytwórnia powinna być odpowiednio do nich przystosowana, tzn. zaopatriona w systemy ogrzewania wody i kruszyw oraz odpowiednie, termoizolowane pomieszczenie.

Cement, kruszywa oraz dodatki proszkowe należy dozować wagowo. Woda zarobowa, domieszk i ciekłe dodatki mogą być dozowane wagowo lub objętościowo.

Wymagania dla urządzenia dozującego oraz dopuszczalne tolerancje dozowania składników mieszanki według PN-EN 206 podano w Tabeli 13.

Tabela 13. Wymagania dotyczące urządzenia dozującego oraz dopuszczalne tolerancje dozowania składników mieszanki betonowej

<table>
<thead>
<tr>
<th>Wymagania dotyczące urządzenia dozującego</th>
<th>Dozowanie wagowe</th>
<th>Dozowanie objętościowe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ładunek w % pełnej ładowności</td>
<td>Minimalny ładunek(^3) do 20% pełnej ładowności</td>
<td>20% pełnej ładowności do maksymalnego ładunku(^3)</td>
</tr>
<tr>
<td>Maksymalny dopuszczalny błąd w % ładunku</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Minimalny i maksymalny ładunek określa producent urządzenia

Tolerancje dozowania składników mieszanki betonowej

<table>
<thead>
<tr>
<th>Składniki mieszanki betonowej</th>
<th>Cement, Woda, Łącznie kruszywa Dodatki i włókna stosowane w ilościach > 5% masy cementu</th>
<th>Domieszk, dodatki i włókna stosowane w ilościach ≤ 5% masy cementu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopuszczalne tolerancje</td>
<td>± 3 % wymaganej ilości</td>
<td>± 5 % wymaganej ilości</td>
</tr>
</tbody>
</table>

Uwaga: Tolerancja jest różnicą między wartością założoną a wartością zmierzoną
Wagi dozujące powinny być kontrolowane co najmniej raz na dwa miesiące, wzorcowane przy rozpoczęciu produkcji, a następnie przynajmniej raz na rok. Urządzenia dozujące wodę powinny być sprawdzane co najmniej raz na miesiąc.

3.3. Warunki prowadzenia produkcji

Ocenę i weryfikację stałości właściwości użytkowych wytwarzanego betonu należy prowadzić według krajowego systemu 2+.

4. TRANSPORT

4.1. Wymagania ogólne dotyczące transportu

Wymagania ogólne dotyczące transportu podano w WWiORB D-M-00.00.00. "Wymagania ogólne".

4.2. Transport i przechowywanie cementu

Każe dostarczona partia cementu, różniącą się rodzajem, klasą wytrzymałości lub innymi właściwościami, powinna być magazynowana oddzielnie, tak aby można ją było łatwo zidentyfikować.

Warunki składowania cementu:
- cement w workach należy chronić przed deszczem i zawiłgoceniem,
- cement luzem należy składować w silosach.

Cement w workach należy przewozić środkami transportu zapewniającymi zabezpieczenie cementu przed zamoczeniem. Do transportu cementu luzem należy używać specjalnych wagonów kolejowych i samochodów z cysternami przystosowanymi do załadunku grawitacyjnego, jak również wyposażonymi w regulowane urządzenia załadowczo-wyładowcze.
4.3. Transport i przechowywanie kruszyw

Transport kruszyw nie powinien powodować ich segregacji.

Kruszywo należy magazynować na utwardzonym i zabezpieczonym przed podmakaniem (odwodnionym) podłożu w sposób umożliwiający separację różnych rodzajów kruszywa i zapobiegający przed ich zanieczyszczeniem.

4.4. Transport i przechowywanie domieszek i dodatków

Transport i przechowywanie domieszek oraz dodatków powinno być zgodne z zaleceniami Producenta/Dostawcy oraz odpowiednimi Polskimi Normami.

4.5. Ogólne zasady transportu mieszanki betonowej

Organizacja transportu (dobór środków, czas trwania) powinna zapewnić dostarczenie do miejsca układania mieszanki betonowej o takiej urabialności, a w przypadku mieszanek napowietrzanych, także wymaganej zawartości powietrza, jakie zostały przyjęte na etapie zatwierdzenia składu betonu dla danego sposobu zagęszczania i rodzaju elementu.

Podczas załadunku, transportu i rozładunku, a także transportu wewnętrznego na placu budowy, należy zminimalizować niepożądane zmiany jakości mieszanki betonowej, takie jak segregacja składników, wydzielanie się wody, wyciek zaczynu i wszelkie inne zmiany.

W czasie transportu mieszanki betonowej należy zachować następujące wymagania:

- mieszanka betonowa powinna być dostarczona na miejsce ułożenia bez przeładunku; a w razie wystąpienia takiej konieczności liczba przeładowań powinna być jak najmniejsza,
- pojemniki, w których przewożona jest mieszanka betonowa, powinny zapewnić możliwość stopniowego ich opróżniania oraz łatwość oczyszczania i przepłukiwania.

Transport mieszanki betonowej w betonomieszarkach samochodowych (betonowozach) mieszających ją w czasie jazdy, powinien być tak zorganizowany, aby wyładunek następował bezpośrednio nad miejscem ułożenia mieszanki lub, jeżeli jest to niemożliwe, w pobliżu betonowanego elementu obiektu. W miejscu układania mieszanka betonowa może być transportowana za pomocą:

- pomp zamontowanych na podwoziu samochodowym z ruchomym wysięgnikiem,
- pomp stacjonarnych z zastosowaniem systemu rurociągów i specjalistycznych urządzeń do betonu,
- urządzeń dźwigowych przy zastosowaniu specjalnych pojemników do przenoszenia mieszanki na miejsce jej układania,
- bezpośrednio z leja betonowozu.

Czas transportu mieszanki betonowej (od momentu załadowania samochodu do jego wyładunku) nie powinien przekraczać okresu wstępnego wiązania. W przypadku mieszanki betonowej nie zawierającej domieszek o działaniu opóźniającym, w temperaturze otoczenia atmosferycznego nie przekraczającej +10°C, pojemniki samochodowe należy całkowicie rozładować w czasie co najmniej 90 min, licząc od chwili pierwszego kontaktu wody z cementem. Przy temperaturze otoczenia do +20°C czas ten powinien nie przekraczać 60 min, a przy temperaturze otoczenia do +30°C 30 min.

Sumaryczne czasy od momentu dodania wody do mieszanki od rozpoczęcia jej produkcji i do momentu jej ułożenia w deskowaniu, mogą być dłuższe o co najwyżej 30 min od ww. podanych czasów transportu.
Technologia betonowania musi uwzględniać dozowanie wtórne superplastyfikatora na placu budowy, na wypadek gdy czas dowozu i rozładunku przekracza 1h i może wtedy wystąpić nadmierne zgęstnienie mieszanki w wypadku betonu SCC.

Nie należy planować betonowania w czasie, w którym rytmika dostaw mieszanki na plac budowy mogłaby zostać zakłócona przez takie niekorzystne zjawiska jak. np. korki uliczne, gwałtowne zmiany pogodowe itp.

Inżynier/Inspektor Nadzoru ma obowiązek do odrzucenia partii transportowanego betonu, która nie spełnia warunków opisanych powyżej.

Warunki dostawy mieszanki betonowej do miejsca jej układania powinny być zgodne z wymaganiami PN-EN 206.

5. WYKONANIE ROBÓT

5.1. Wymagania ogólne

Wymagania ogólne dotyczące wykonywania robót podano w WWiORB D-M-00.00.00. "Wymagania ogólne".

5.2. Zalecenia ogólne

5.2.1. Zgodność wykonywania robót z dokumentacją

Sposób wykonania robót powinien być zgodny z dokumentacją projektową, WWiORB oraz wymaganiami odpowiednich Polskich Norm, a także dokumentacją technologiczną dostarczoną przez Wykonawcę i zatwierdzoną przez Inżyniera/Inspektora Nadzoru.

Dokumentacja projektowa wraz z WWiORB powinna wymagać dla całej konstrukcji klasę wykonania „3”, oraz klasę pielęgnacji co najmniej „3”, zgodnie z zasadami określonymi w PN-EN 13670.

Dokumentacja technologiczna dostarczona przez Wykonawcę powinna zawierać Program Zapewnienia Jakości (PZJ) oraz Projekt Organizacji Robót (POR) wraz z harmonogramem uwzględniającym wszystkie warunki, w jakich będą wykonywane roboty betonowe, projekty wykonawcze rusztowań i deskowań, projekt technologiczny betonowania.

5.2.2. Projekt technologiczny betonowania

Projekt technologiczny betonowania powinien obejmować:

- organizację ruchu na drogach dojazdowych do terenu budowy i drogach na terenie budowy,
- specyfikację betonu, receptury mieszanek betonowych, wymagania dodatkowe dotyczące betonu (w tym w szczególności wymagania dotyczące betonu przeznaczonego na elementy masywne),
- sposób wytwarzania mieszanki betonowej,
- sposób transportu mieszanki betonowej,
- projekt betonowania zawierający ustawienie pomp do podawania mieszanki betonowej,
- harmonogram betonowania, który powinien określać m.in.: prędkość układania i zagęszczania mieszanki betonowej, kierunki betonowania, fazy betonowania i planowane czasy ich realizacji, wykaz przerw w betonowaniu oraz sposób łączenia betonu w przerwach,
- sposób i czas trwania pielęgnacji betonu,
- sposób i czas trwania pielęgnacji i ochrony termicznej betonu elementów masywnych,
- sposób i warunki rozformowania konstrukcji,
- metodologię naprawy ewentualnych błędów wykonania, w tym naprawy powierzchni betonu,
- zestawienie wymaganych badań i pomiarów.

5.3. Zakres robót

Podstawowe czynności związane z wykonywaniem robót betonowych obejmują:
- roboty przygotowawcze, w tym montaż rusztowania i deskowania,
- wytwarzanie mieszanki betonowej,
- układanie i zagęszczanie mieszanki betonowej,
- pielęgnację betonu,
- demontaż deskowania i rusztowania,
- wykańczanie powierzchni betonu,
- roboty wykończeniowe.

5.3.1. Roboty przygotowawcze

Przed przystąpieniem do betonowania, Inżynier/Inspektor Nadzoru powinien potwierdzić prawidłowość wykonania robót poprzedzających betonowanie, a w szczególności:
- prawidłowość montażu rusztowania i deskowania,
- prawidłowość wykonania zbrojenia,
- prawidłowość przygotowania miejsc wprowadzania węży pompy lub rękawa pojemnika na mieszankę betonową w szkielet zbrojeniowy – w celu zapewnienia właściwego układania mieszanki betonowej w elemencie,
- zgodność rzędnych z dokumentacją projektową, w tym uwzględnienie podniesień wykonawczych.
- czystość powierzchni wewnętrznej deskowania oraz obecność przekładek dystansowych zapewniających grubość otulenia prętów zbrojeniowych,
- przygotowanie powierzchni betonu uprzednio ułożonego, np. w miejscu przerw roboczych,
- prawidłowość wykonania wszystkich robót zanikających, np. wykonania przerw dylatacyjnych, warstw izolacyjnych, itp.,
- prawidłowość rozmieszczenia i zamocowania w sposób niezawodny elementów, które przewidziane są do wbetonowania (kanaly, wpusty, szczątki, kotwy, rury itp.),
- gotowość sprzętu i urządzeń do betonowania.

5.3.1.1. Deskowania

Stosowanie betonu samozagęszczalnego SCC, charakteryzującego się wysoką płynnością, wywołuje większe parcie boczne mieszanki niż przy betonach zwykłych. Wymaga to stosowania deskowań wzmocnionych, o mniejszych elementach, a także zwiększenia liczby podpór i ściągów. Każdorazowa zmiana receptury betonu samozagęszczalnego wymaga weryfikacji warunków wbudowania mieszanki betonowej.

Wykonawca dostarcza projekt techniczny deskowania wykonany w oparciu o rysunki zawarte w dokumentacji projektowej lub według własnego opracowania. Projekt deskowania powinien być każdorazowo oparty na obliczeniach statycznych. Ustalona konstrukcja deskowania powinna być sprawdzona na siły wywołane parciem świeżo ułożonej mieszanki betonowej i uderzanie przy jej wylewaniu z pojemników z uwzględnieniem szybkości betonowania, sposobu zagęszczania i obciążania pomostami roboczymi, co jest szczególnie ważne w przypadku stosowania betonu samozagęszczalnego. W projekcie deskowania należy uwzględnić szerokość deskowania, kierunek jego ułożenia, podział na odcinki, rozstaw i rozmieszczenie kotew, aby ze względu na właściwości betonu do odwzorowania powierzchni deskowania, nie doprowadzić do wizualnego zaburzenia zaplanowanej kompozycji architektonicznej.

Wykonanie deskowania powinno uwzględniać podniesienie wykonawcze związane ze strzałką konstrukcji, ugięciem i osiadaniem rusztowań pod wpływem ciężaru ułożonej mieszanki betonowej.

Konstrukcja deskowania powinna spełniać następujące warunki:

a) zapewnić odpowiednią sztywność i niezmienność kształtu konstrukcji,

b) zapewnić odpowiednią szczelność np. poprzez zastosowanie uszczelek,

c) wykazywać odporność na deformacje pod wpływem warunków atmosferycznych,

d) powierzchnie deskowań stykających się z betonem powinny być pokryte warstwą środka antydhezyjnego, zaakceptowanego przez Inżyniera/Inspektora Nadzoru, do deskowania należy stosować środki antydhezyjne, przy przestrzeganiu warunków:

- należy właściwie dobrać środek do warunków atmosferycznych,
- środek należy równomiernie nanieść na powierzchnię deskowania,
- nadmiar środka należy zebrać (zbyt duża ilość może spowodować odbarwienie powierzchni).
- zapewnić wykończenie widocznych powierzchni betonu, zgodnie z wymaganiami dokumentacji projektowej, w tym celu należy:

I. w przypadku deskowania ze sklejki wodoodpornej należy dążyć do wyeliminowania możliwości wystąpienia tzw. „marmurków” powstających w wyniku osadzania się kropel wody na niechłonną powierzchnię deskowania. Lokalnie powstają wówczas miejsca o różnych wartościach w/c, które prowadzą do powstania jasnych i ciemniejszych plam, beton o mniejszym w/c ma ciemniejszy kolor, zaś beton o wyższym w/c jest jaśniejszy,

II. w przypadku deskowania stalowego należy dążyć do wyeliminowania powstania odbarwień w postaci rdzawych plam.

Deskowania powinny być, przed wypełnieniem mieszanką betonową, dokładnie sprawdzone i odebrane, aby wykluczały możliwość jakichkolwiek zniekształceń lub odchyleń w wymiarach betonowej konstrukcji. Wykonawca powinien zawiadomić Inżyniera/Inspektora Nadzoru, o tym że deskowania są gotowe do wypełnienia mieszanką.
betonową, na tyle wcześniej, aby Inżynier/Inspektor Nadzoru był w stanie dokonać inspekcji deskowania przed rozpoczęciem betonowania.

Dopuszcza się następujące odchylenia deskowania od wymiarów nominalnych przewidzianych dokumentacja projektową:

a) rozstaw żeber deskowań ± 0,5 % i nie więcej niż 2 cm,
b) grubość desek jednego elementu deskowania ± 0,2 cm,
c) odchylenia deskowań od prostoliniowości lub od płaszczyzny o 1 %,
d) odchylenie ścian o pionu o ± 0,2 %, lecz nie więcej niż 0,5 cm,
e) wybrzuszenie powierzchni o ± 0,2 cm na odcinku 3 m,
f) odchyłki wymiarów wewnętrznych deskowania (przekrojów betonowych):
 - 0,2 % wysokości, lecz nie więcej niż - 0,5 cm,
 - 0,5 % wysokości, lecz nie więcej niż + 2 cm,
 - 0,2 % grubości (szerokości), lecz nie więcej niż -0,2 cm,
 - 0,5 % grubości (szerokości), lecz nie więcej niż + 0,5 cm.

Dopuszczalne ugięcia deskowań:
 - 1/200 l - w deskach i belkach pomostów,
 - 1/400 l - w deskach deskowań widocznych powierzchni mostów betonowych i żelbetowych,
 - 1/250 l - w deskach deskowań niewidocznych powierzchni mostów betonowych i żelbetowych.

Wszystkie stosowane deskowania powinny być tego samego typu, dostarczone przez jednego producenta. Wszystkie krawędzie betonu powinny być ścięte za pomocą listwy trójkątnej. Listwy te muszą być następnie usuwane z wykonanej konstrukcji.

5.3.1.2. Rusztowania

Rusztowania i ich posadowienie dla ustrój niosącego należy wykonywać według projektu technologicznego, opartego na obliczeniach statyczno-wytrzymałościowych. Rusztowania muszą uwzględniać podniesienie wykonawcze ustrój niosącego (podane w dokumentacji projektowej) oraz wpływ osiadania samych podpór tymczasowych przyjętych przez Wykonawcę. Sposób posadowienia rusztowania mostów należy uzgodnić z administratorem cieku lub rzeki oraz uzyskać wszelkie pozwolenia.

W konstrukcji rusztowań można dopuścić następujące odchylenia od wymiarów lub położenia:
 - zmniejszenie przekroju elementu nie więcej niż o 15%,
 - odchylenie rozstawu pali lub ram do 5 %, lecz nie więcej niż o 20 cm,
 - odchylenie od pionu pali lub ram do 0,01 radiana w mierze łukowej, lecz nie więcej niż wychylenie o ± 10 cm w poziomie w mierze liniowej,
 - różnice w rozstawie belek poprzecznych (oczepów) lub podłużnic (rygli lub dźwigarów) o ± 20cm,
 - różnice w położeniu górnej krawędzi oczepu + 2 cm i - 1 cm,
strzałki różne od obliczeniowych do 10 %.

Na wierzchu rusztowań powinny być pomosty z desek z obustronnymi poręczami wysokości co najmniej 1,1 m i z krawędziami wysokości 0,15 m.

5.3.2. Wytwarzanie mieszanki betonowej

Wytwarzanie mieszanki betonowej powinno odbywać się wyłącznie w wytwórni betonu, która umożliwia spełnienie wymagań niniejszych WWiORB opisanych w pkt 3.1. Wytwarzanie mieszanki betonowej powinno odbywać się na podstawie roboczej receptury mieszanki zaakceptowanej przez Inżyniera/Inspektora Nadzoru.

Składniki betonu powinno się mieszać w mieszalnikach planetarnych, talerzowych jednowałowych lub dwuwałowych.

Domieszki, jeśli są stosowane, należy dodawać podczas zasadniczego procesu mieszania, z wyjątkiem domieszek znacznie redukujących ilość wody, które można dodawać po zasadniczym procesie mieszania, wówczas mieszankę betonową należy powtórnie mieszać do momentu, aż domieszka będzie całkowicie rozprowadzona w zarobie lub ładunku oraz osiągnięto swoją pełną skuteczność. W takim wypadku czas mieszania przyjmuje się 1 minuta/1m³ mieszanki betonowej, jednak nie krócej niż 5 minut, przy maksymalnych obrotach mieszalnika. Czas mieszania składników powinien być ustalony doświadczalnie, w zależności od składu i wymaganej konsystencji produkowanej mieszanki oraz rodzaju urządzenia mieszającego. Nie może być jednak krótszy niż 30 s.

Czas i szybkość mieszania powinny być tak dobrane, aby wyprodukować mieszankę spełniającą wymagania niniejszych WWiORB. Zarób mieszanki betonowej powinien być jednorodny, tak aby w czasie jej transportu i innych operacji technologicznych nie nastąpiła segregacja składników. Urabialność mieszanki powinna pozwolić na uzyskanie maksymalnej szczelności bez wystąpienia pustek w masie betonu lub na jego powierzchni. Produkcia mieszanki betonowej i betonowanie powinny zostać przerwane, gdy temperatura spadnie poniżej +5°C za wyjątkiem sytuacji szczególnych, kiedy został prze Inżyniera/Inspektora Nadzoru zatwierdzony PZJ na betonowanie w warunkach zimowych. Wówczas betonowanie należy prowadzić z reżimem technologicznym zgodnie z zatwierdzonym PZJ.

Urabialność nie powinna być osiągana przy większym zużyciu wody niż było to określone w recepturze mieszanki.

5.3.3. Podawanie, układanie i zagęszczanie mieszanki betonowej

5.3.3.1. Roboty przed rozpoczęciem układania mieszanki betonowej

Przed rozpoczęciem układania mieszanki betonowej należy sprawdzić prawidłowość wykonania wszystkich robót poprzedzających betonowanie zgodnie z pkt. 5.3.1.

Deskowanie należy powlec środkiem antyadhezyjnym, który powinien być dobry i stosowany w taki sposób, aby nie miał szkodliwego wpływu na beton, stal zbrojeniową, deskowanie i konstrukcję.

Należy pamiętać o wykonaniu wszelkiego rodzaju otworów, nisz, zagłębień, zamocowań zgodnie z dokumentacją projektową. Wszystkie konsekwencje wynikające z braku lub nieprawidłowości tych elementów obciążają całkowicie Wykonawcę zarówno jeśli chodzi o późniejsze rozkucie i naprawy, jak i ewentualne opóźnienia w wykonaniu prac własnych i towarzyszących (wykonywanych przez innych podwykonawców).
5.3.3.2. Układanie mieszanki betonowej

Wysokość swobodnego zrzucania mieszanki betonowej nie powinna przekraczać 0,5 m od powierzchni, na którą spada. W przypadku, gdy wysokość ta jest większa, mieszankę należy podawać za pomocą rynny zsypowej (do wysokości 3,0 m) lub leja zsypowego teleskopowego (do wysokości 8,0 m). Przy układaniu mieszanki betonowej z wysokości większej niż 8m należy stosować odcinkowe przewody przemianowe, zaopatrzony w końcowe urządzenia do redukcji szybkości spadającej mieszanki.

W przypadku gdy wysokość podawania mieszanki betonowej SCC jest większa niż 1,0 m zaleca się betonowanie kontraktorowe lub półkontraktorowe. Mieszankę betonową SCC można podawać za pomocą rynny zsypowej. W takim przypadku nie wolno dopuszczać do zalewania kosza pomp pompy do przed rozpoczęciu procesu betonowania, co zmniejsza pompą i jej przewodów. Dopuszcza się podawanie mieszanki betonowej SCC pod ciśnieniem, pompując od dołu przez specjalne zamki w deskowaniu, których rozstaw musi zapewnić jednorodne wypełnienie przekroju. Przy przekrojach zamkniętych od góry musi być zapewnione samośmierdzienie podczas betonowania oraz kontrola wypełnienia mieszanką betonową.

W celu zapewnienia powyższych warunków układania mieszanki betonowej, w szkieletie zbrojenia elementu muszą być przygotowane przede wszystkim odpowiednie otwory umożliwiające wprowadzenie węże pompy betonu lub ręka podajników, rynny zsypowej lub leja zsypowego na wymaganą głębokość i w odpowiednim rozstawie, nie większym niż 2,5 m.

Miejsca te powinny być wskazane w projekcie zbrojenia i powinny być odpowiednio i wyraźnie zaznaczone na szkieletie zbrojenia, na przykład farbą o jasnym kolorze, tak aby w trakcie betonowania, również w warunkach nocnych, były łatwe do lokalizacji przez brygadę betoniarzy, operatora pomp do betonu i/lub operatora dźwigu.

Mieszankę betonową należy układać przy zachowaniu następujących warunków ogólnych:

- w czasie betonowania należy stałe obserwować prawidłowość kształtu konstrukcji deskowana i rusztowa, a w razie potrzeby dokonywać pomiaru deformacji (odkształceń/przemieszczeń),
- szybkość i wysokość wypełnienia deskowania mieszanką betonową powinny być określone w zależności od wytrzymałości i sztywności deskowania przyjmującego parcie świeżo ułożonej mieszanki betonowej, szczególną uwagę należy zwrócić przy stosowaniu mieszanki betonowej SCC,
- w okresie upalnej, słonecznej pogody, ułożona mieszanka powinna być niezwłocznie zabezpieczona przed nadmierną utratą wody,
- w czasie deszczu mieszanka betonowa powinna być chroniona przed wodą opadową (podczas układania i po ułożeniu); gdy na świeżo ułożoną mieszankę spadnie nadmierna ilość wody, która może spowodować zmianę konsystencji mieszanki, wodę tę należy usunąć,
- w miejscach, w których skomplikowany kształt deskowania lub gęsto ułożone zbrojenie utrudnia mechaniczne zagęszczenie mieszanki, należy dodatkowo stosować zagęszczenie ręczne (sztychowanie).

Przy wykonywaniu monolitycznych elementów konstrukcji należy przestrzegać dokumentacji technologicznej, która powinna uwzględniać następujące zalecenia:
- w fundamentach i korpusach podpór mieszankę betonową należy układać bezpośrednio z pojemnika lub rurociągu pompy, bądź też za pośrednictwem rynny, warstwami o grubości do 40 cm, zagięszczając wibratorami wgłębnymi,
- w elementach o bardzo gęstym zbrojeniu, nie pozwalającym na użycie wibratorów wgłębnym buławowym, należy używać wibratorów wgłębnym prętowym,
- przy wykonywaniu płyt mieszankę betonową należy układać bezpośrednio z pojemnika lub rurociągu pompy,
- przy betonowaniu chodników, gzymów, wsporników, zamków i stref przydylatacjiowych stosować wibrator różnego rodzaju,
- przerwa w układaniu poszczególnych warstw nie powinna być dłuższa niż 15 min.

Mieszanka betonu samozagęszczalnego SCC powinna być układana w jednej ciągłej operacji, aby miejsca jej podawania powinny być tak rozmieszczane, aby powierzchnia układanej mieszanki była cały czas w ruchu. Zaleca się poziomy przepływ mieszanki betonowej oraz ograniczenie swobodnego spadku. W razie awaryjnego wystąpienia przerwy roboczej na okres ponad 2 godzin, miejsce szwu roboczego należy przykryć folią lub zwilżyć wodą w momencie wznowienia betonowania. Jeśli przerwa jest dłuższa niż 12 h, szew należy uszorstnić mechanicznie lub pokryć warstwą szczepną z gotowej zaprawy.

Przebieg układania mieszanki betonowej w deskowaniu powinien być rejestrowany w dzienniku robót, w którym należy podać:
- datę rozpoczęcia i zakończenia betonowania poszczególnych elementów obiektu,
- projektowaną wytrzymałość betonu na ściskanie, robocze receptury mieszanek betonowych, konsystencję mieszanki betonowej oraz zawartość powietrza w mieszance,
- daty, sposób, miejsce i liczbę pobranych próbek kontrolnych betonu oraz ich oznakowanie, a następnie terminy i wyniki badań,
- temperaturę zewnętrzną powietrza wilgotność i inne dane dotyczące warunków atmosferycznych.

Betonowanie podwodne należy wykonywać przy spełnieniu następujących wymagań:
- leje przenośne o średnicach od 0,15 m do 0,20 m poszerzone stożkowo w górnej części, w celu łatwiejszego wprowadzania mieszanki betonowej lub odpowiednie leje nieruchome należy opuszczać do dna i w tym położeniu wypełniać mieszankę betonową, aby następna porcja mieszanki, która będzie wrzucana do leja nie przechodziła przez warstwę wody,
- stopniowemu podnoszeniu leja powinien towarzyszyć wypływ od dołu mieszanki betonowej,
- w przypadku większych wymiarów betonowanych elementów, należy mieszankę rozprowadzić równomiernie na podniebne obudowie przestrzeni, korzystając z ruchomego lub elastycznego rękawa,
- w przypadku mniejszych wymiarów elementu, np. w rurach, mieszanka wypływająca ze stacjonarnej rury powinna wypełniać całą przestrzeń, tworząc spłaszczony stożek.
Betonowanie elementów masywnych powinno być prowadzone, tak aby wyeliminować wpływ temperatury i skurczu. Mieszanka betonowa powinna być dostarczana na miejsce ułożenia w sposób ciągły, przy maksymalnym zmechanizowaniu jej transportu i układania.

Mieszankę należy układać warstwami poziomymi o jednakowej grubości, dostosowanej do charakterystyki wibratorów przewidzianych do zagęszczania mieszanki. Każda warstwa powinna być układana bez przerwy i tylko w jedną stronę. Układanie mieszanki uskokami (schodkami) może być dopuszczone, jeżeli tego rodzaju przebieg betonowania został ustalony w projekcie technologicznym betonowania, a sam tryb układania określono szczegółowo. Góra powierzchnia poszczególnych warstw nie powinna być wygładzana (z wyjątkiem ostatniej warstwy wierzchniej).

Harmonogram betonowania elementów masywnych obiektu oraz zasady pomiaru temperatury zabetonowanych części w trakcie dojrzewania powinny być podane w projekcie technologicznym betonowania, a w szczególności dotyczy to:

- szybkości układania i zagęszczania mieszanki betonowej,
- kierunków betonowania,
- poszczególnych faz betonowania i planowanych czasów ich realizacji,
- metod ochrony betonu przed czynnikami atmosferycznymi,
- metod zapewnienia nieprzekroczenia maksymalnej dopuszczalnej temperatury oraz właściwego rozkładu temperatury w dojrzewającym elemencie.

Wykonawca robót zobowiązany jest do opracowania i przedstawienia szczegółowej technologii betonowania, uwzględniającej przepisany sprzęt, doświadczenie oraz rzeczywiste warunki organizacyjno-logistyczne do zatwierdzenia przez Inżyniera/Inspektora Nadzoru.

5.3.3.3. Zagęszczanie mieszanki betonowej

Mieszanka betonowa powinna być tak układana i zagęszczana, aby zbrojenie i wkładki były obetonowane, grubość otulenia miała wartość określoną w projekcie, a beton osiągał przewidywaną wytrzymałość. Mieszanka betonowa w czasie zagęszczania nie powinna ulegać rozsegregowaniu, a zawartość powietrza w mieszance betonowej po ułożeniu i zagęszczeniu nie powinna odbiegać od wartości dopuszczalnej.

Zakres i sposób skutecznego stosowania każdego typu wibratora, w tym: czas wibrowania na jednym stanowisku za pomocą wibratora pogrążalnego, szybkość przesuwu wibratorów powierzchniowych, skuteczny promień działania każdego typu wibratora, powinien zostać ustalony doświadczalnie w zależności od przekroju konstrukcji, mocy wibratorów, odległości ich ustawienia, charakterystyki mieszanki betonowej.

Sposób zagęszczania mieszanki betonowej powinien być uzgodniony i zatwierdzony przez Inżyniera/Inspektora Nadzoru.

Przy zagęszczaniu mieszanki betonowej należy stosować następujące warunki:

- wibrator wglębnie (pogrążalne) należy stosować o częstotliwości min. 6000 drgań na minutę z buławami o średnicy nie większej niż 0,65 odległości między prętami zbrojenia leżącymi w płaszczyźnie poziomej,
- niedopuszczalne jest opieranie buław wibratora o pręty zbrojeniowe oraz deskowanie,
odległość sąsiednich zagłębień wibratora pogrążalnego nie powinna być większa niż 1,5-krotny skuteczny promień działania wibratora,

- grubość warstwy zagęszczanej mieszanki betonowej nie powinna być większa od 1,25 długości buławy wibratora (roboczej jego części),

- wibrator w czasie pracy powinien być zagłębiany na 50 mm do 100 mm w dolną warstwę poprzednio ułożonej mieszanki,

- grubość płyt zagęszczanych wibratorami nie powinna być mniejsza niż 12 cm; płyty o mniejszej grubości należy zagęszcać za pomocą łat wibracyjnych,

- belki (łaty) wibracyjne powinny być stosowane do wyrównania powierzchni betonu płyt pomostów i charakteryzować się jednakowymi organiami na całej długości,

- wibrator przyczepne mogą być stosowane do zagęszczania mieszanki betonowej w elementach nie grubszych niż 0,5 m przy jednostronnym dostępie oraz 2,0 m przy obustronnym, górný obszar elementów pionowych powinien być wtórnie zawiwany.

Betonowanie elementów z betonu samozagęszczalnego SCC należy prowadzić w tempie umożliwiającym swobodne rozpylanie i podnoszenie się mieszanki w deskowaniu, z szybkością dostosowaną do parcia na deskowanie i umożliwiającą samoodpowietrzenie się mieszanki betonowej. Mieszanek betonowych samozagęszczalnych SCC nie należy zagęszczać mechanicznie.

Zagęszczanie mieszanki betonowej w elementach masowych obiektów powinno być dokonywane za pomocą wibratorów węglnych pojedynczych lub zespołu wibratorów na wspólnej ramie. Zagęszczanie mieszanki za pomocą wibratorów powierzchniowych dopuszcza się tylko dla warstwy wierzchniej.

Okres pomiędzy wykonaniem jednej warstwy a rozpoczęciem następnej powinien być ustalony doświadczalnie w zależności od temperatury otoczenia, warunków atmosferycznych, właściwości cementu i innych przewidywanych czynników.

5.3.3.4. Przerwy w betonowaniu

Przerwy robocze w betonowaniu konstrukcji powinny się znajdować w miejscach przewidzianych w dokumentacji projektowej i uzgodnionych z Inżynierem/Inspektorem Nadzoru. Kąt nachylenia płaszczyzny styku mieszanki betonowej ułożonej powinien być zbliżony do 45°. W przypadku konstrukcji bardziej odpowiedzialnych ukształtowanie powierzchni betonu w przerwie roboczej należy uzgodnić z Projektantem.

Dokładny czas rozpoczęcia nakładania kolejnej warstwy betonu powinien być ustalony w zależności od warunków atmosferycznych, właściwości cementu i innych czynników wpływających na jakość konstrukcji. Jeżeli temperatura powietrza jest wyższa niż +20°C, to czas trwania przerwy nie powinien przekraczać 2 godzin.

W przypadku wznowienia betonowania po dłuższej przerwie płaszczyznę styku należy starannie przygotować do późniejszego połączenia betonu stwardniałego z betonem świeżo nałożonym poprzez:

- usunięcie z powierzchni betonu stwardniałych luźnych okruchów betonu oraz warstwy pozostałości młecza lub zaczynu cementowego,

- obfite zwilżenie wodą,

- zastosowanie warstwy szczepnej.
Zabiegi te należy wykonać bezpośrednio przed rozpoczęciem betonowania. Po wznowieniu betonowania należy unikać dotykania wibratorem deskowania, zbrojenia i poprzednio ułożonego betonu.

5.3.4. Warunki pogodowe przy układaniu, twardnieniu i dojrzewaniu betonu

5.3.4.1. Temperatura otoczenia

Betonowanie konstrukcji należy wykonywać wyłącznie w temperaturze nie niższej niż +5°C, zachowując warunki umożliwiające uzyskanie przez beton wytrzymałości co najmniej 15 MPa przed pierwszym zamarznięciem.

W wyjątkowych przypadkach dopuszcza się betonowanie w temperaturze do -5°C, jednak wymaga to zgody Inżyniera/Inspektora Nadzoru oraz zapewnienia odpowiedniej temperatury mieszanki betonowej w chwili układania oraz zabezpieczenia uformowanego elementu przed utratą ciepła do uzyskania przez beton wytrzymałości 15 MPa. Przez ten okres temperatura mieszanki betonowej i ułożonego betonu w konstrukcji nie może być niższa niż +5°C.

Temperatura mieszanki betonowej w chwili opróżniania mieszalnika nie powinna być wyższa niż +35°C, a w momencie dostarczenia mieszanki betonowej jej temperatura nie powinna być niższa niż +5°C.

Przy betonowaniu elementów masywnych należy przewidzieć wpływ warunków temperaturowych betonowania oraz temperatury wbudowywanej mieszanki betonowej tak, aby zapobiec przekroczeniu maksymalnej dopuszczanej temperatury dojrzewającego betonu wynoszącej +70°C oraz nie dopuścić do wystąpienia gradientu temperaturowego powyżej 25°C.

W okresie obniżonej temperatury roboty betonowe powinny być prowadzone zgodnie z wymaganiami podanymi w Instrukcji ITB nr 282/2011 ze szczególnym uwzględnieniem minimalnej temperatury mieszanin w chwili jej układania oraz sposobu zabezpieczenia świeżo ułożonego betonu przed działaniem niskiej temperatury.

5.3.4.2. Zabezpieczenie robót betonowych podczas opadów

5.3.5. Pielęgnacja betonu

Pielęgnację betonu należy rozpocząć bezpośrednio po zakończeniu zagęszczania i wykańczania powierzchni, zachowując minimalne okresy pielęgnacji podane w PN-EN 13670.

Okres pielęgnacji betonu dobiera się w zależności od wymaganego rozwoju właściwości betonu definiowanego za pomocą czasu pielęgnacji lub przyrostem wymaganej wytrzymałości betonu na ścianie po 28 dniach dojrzewania (Tabela 14). Dodatkowe wymagania w zakresie czasu trwania pielęgnacji, np. wyższe niż uzyskanie 70% wytrzymałości charakterystycznej, mogą być określone w STWiORB.
Tabela 14. Klasy pielęgnacji według PN-EN 13670

<table>
<thead>
<tr>
<th>Klasy pielęgnacji</th>
<th>Klasa pielęgnacji 1</th>
<th>Klasa pielęgnacji 2</th>
<th>Klasa pielęgnacji 3</th>
<th>Klasa pielęgnacji 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czas [godziny]</td>
<td>12<sup>a)</sup></td>
<td>Nie stosuje się</td>
<td>Nie stosuje się</td>
<td>Nie stosuje się</td>
</tr>
<tr>
<td>Wymagana wytrzymałość [% wytrzymałości charakterystycznej na ściskanie po 28 dniach]</td>
<td>Nie stosuje się</td>
<td>35%</td>
<td>50%</td>
<td>70%</td>
</tr>
</tbody>
</table>

^{a)} Jeżeli wiązanie nie trwa dłużej niż 5 godzin, a temperatura powierzchni betonu jest równa +5°C lub wyższa

Zaleca się stosowanie co najmniej klasy pielęgnacji „3”. Czas pielęgnacji betonu powinien być uzależniony od warunków atmosferycznych, szybkości narastania wytrzymałości betonu oraz rodzaju zastosowanego cementu – wymagania zestawione w Tabelach 15 i 16, odpowiednio dla 3 i 4 klasy pielęgnacji. Sposób pielęgnacji betonu powinien być ustalony w projekcie technologicznym betonowania.

Tabela 15. Minimalny okres pielęgnacji dla 3. klasy pielęgnacji (odpowiadający wytrzymałości powierzchni wynoszącej 50% wytrzymałości charakterystycznej)

<table>
<thead>
<tr>
<th>Temperatura (t) powierzchni betonu [°C]</th>
<th>Minimalny okres pielęgnacji [dni] <sup>a)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rozwój wytrzymałości betonu <sup>c),d)</sup> ((f_{cm2}/f_{cm28}) = r)</td>
</tr>
<tr>
<td></td>
<td>szybki (r \geq 0.50)</td>
</tr>
<tr>
<td>t (\geq 25)</td>
<td>1,5</td>
</tr>
<tr>
<td>25 > t (\geq 15)</td>
<td>2,0</td>
</tr>
<tr>
<td>15 > t (\geq 10)</td>
<td>2.5</td>
</tr>
<tr>
<td>10 > t (\geq 5)<sup>b)</sup></td>
<td>3.5</td>
</tr>
</tbody>
</table>

^{a)} Jeżeli czasu początku wiązania przekracza 5 godzin różnica należy doliczyć do czasu pielęgnacji.
^{b)} W przypadku gdy temperatura spadnie poniżej 5°C, okres ten należy doliczyć do czasu pielęgnacji.
^{c)} Rozwój wytrzymałości betonu rozumiany jest jako stosunek wytrzymałości na ściskanie po 2 dniach dojrzewania do wytrzymałości na ściskanie po 28 dniach dojrzewania.
^{d)} Dla betonów o bardzo wolnym rozwoju wytrzymałości specyfikacje wykonawcze powinny zawierać specjalne wymagania.

Tabela 16. Minimalny okres pielęgnacji dla 4. klasy pielęgnacji (odpowiadający wytrzymałości powierzchni wynoszącej 70% wytrzymałości charakterystycznej)

<table>
<thead>
<tr>
<th>Temperatura (t) powierzchni betonu [°C]</th>
<th>Minimalny okres pielęgnacji [dni] <sup>a)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rozwój wytrzymałości betonu <sup>c),d)</sup> ((f_{cm2}/f_{cm28}) = r)</td>
</tr>
<tr>
<td></td>
<td>szybki (r \geq 0.50)</td>
</tr>
<tr>
<td>t (\geq 25)</td>
<td>3</td>
</tr>
<tr>
<td>25 > t (\geq 15)</td>
<td>5</td>
</tr>
<tr>
<td>15 > t (\geq 10)</td>
<td>7</td>
</tr>
</tbody>
</table>
W okresie pielęgnacji betonu należy:

- chronić odsłonięte powierzchnie betonu przed szkodliwym działaniem warunków atmosferycznych, a szczególnie wiatru i promieni słonecznych (w okresie zimowym - mrozu), poprzez ich osłanianie i zwilżanie w sposób dostosowany do pory roku i miejscowych warunków klimatycznych,

- utrzymywać stałą wilgotność ułożonego betonu przez wymagany okres pielęgnacji zwłaszcza przy stosowaniu cementów portlandzkich wieloskładnikowych CEM II i cementów hutniczych CEM III,

- przystąpić do pielęgnacji bezzwłocznie po zagęszczeniu i wykończeniu powierzchni betonowanego elementu (w razie konieczności ochrony swobodnej powierzchni betonu przed powstaniem rys związanych ze skurczem plastycznym, przed wykończeniem powierzchni należy zastosować pielęgnację tymczasową).

Pielęgnacja wilgotnościowa (zwilżanie wodą) oraz pielęgnacja termiczna w przypadku betonowych elementów masywnych powinna być prowadzona według specjalnych instrukcji.

W przypadku zagrożenia wystąpienia gradientu temperatury w dojrzewającym elemencie powyżej 15°C/m, należy przewidzieć kontrolę procesu dojrzewania poprzez ciągły pomiar i rejestrację temperatury wewnątrz betonu.

Stosowane do pielęgnacji środki błonotwórcze (powłokotwórcze), nanoszone na powierzchnię świeżo ułożonego betonu, powinny odpowiadać następującym wymaganiom:

- utworzenie się szczelnej powłoki powinno nastąpić nie później niż w 24 godziny od chwili aplikacji na powierzchni betonu,

- powstała powłoka powinna być elastyczna i mieć dobrą przyczepność do betonu świeżego i stwardniałego oraz nie ulegać zmienności pod wpływem deszczu,

- środek błonotwórczy nie powinien przy nanoszeniu przenikać w świeżo betonu na głębokość większą niż 1 mm i nie powinien wywoływać korozji betonu oraz stali.

Woda stosowana do pielęgnacji betonu powinna odpowiadać wymaganiom PN-EN 1008. Stosowanie do pielęgnacji betonu środków pielęgnacyjnych oraz systemów izolacji powinno być zgodne z wymaganiami odpowiednich norm zharmonizowanych lub Polskich Norm, europejskimi lub krajowymi ocenami technicznymi oraz zaleceniemi producenta.

W czasie dojrzewania betonu elementy powinny być chronione przed uderzeniami i drganiach przynajmniej do chwili uzyskania przez niego wytrzymałości na ściskanie co najmniej 15 MPa.

<table>
<thead>
<tr>
<th>10 > t ≥ 5</th>
<th>9</th>
<th>18</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Jeżeli czasu początku wiązania przekracza 5 godzin różnice należy doliczyć do czasu pielęgnacji.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) W przypadku gdy temperatura spadnie poniżej 5°C, okres ten należy doliczyć do czasu pielęgnacji.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Rozwój wytrzymałości betonu rozumiany jest jako stosunek wytrzymałości na ściskanie po 2 dniach dojrzewania do wytrzymałości na ściskanie po 28 dniach dojrzewania.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Dla betonów o bardzo wolnym rozwoju wytrzymałości specyfikacje wykonawcze powinny zawierać specjalne wymagania.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Do pielęgnacji betonu w obniżonej temperaturze można stosować jedną z poniższych metod:

- metodę zachowania ciepła betonu w konstrukcji (osłonięcie konstrukcji materiałami ciepłochronnymi zabezpieczającymi beton przed utratą ciepła); materiały ciepłochronne nie powinny dotykać betonu,

- podgrzewanie betonu w konstrukcji - podgrzewanie ciepłym powietrzem lub parą pod specjalnie przygotowanymi osłonami (w przypadku zastosowania tej metody należy zwrócić uwagę na niedopuszczenie do przesuszenia betonu), podgrzewanie matami grzejnymi, zastosowanie elektronagrzewu (w przypadku tej metody należy kontrolować szybkość nagrzewania i wychładzania elementu oraz temperaturę powierzchni betonu),

- metodę cieplaków, czyli wykonywanie konstrukcji w tunelach stałych lub przesuwnych, w których zapewnione są odpowiednie warunki temperaturowe i wilgotnościowe (w przypadku tej metody istotne jest utrzymanie zbliżonych warunków we wszystkich punktach pielęgnowanego elementu).

5.3.6. Rozbiórka deskowania i rusztowań

Rozdeskowanie konstrukcji może nastąpić po osiągnięciu przez beton wytrzymałości niezbędnej do bezpiecznego demontażu deskowania, określonej w dokumentacji projektowej.

Stwierdzenie osiągnięcia przez beton odpowiedniej wytrzymałości powinno zostać dokonane na podstawie badań laboratoryjnych próbek pobranych w chwili betonowania danego elementu konstrukcji (obiektu). Dopuszczalne jest zastosowanie aparatury pomiarowej do określania dojrzałości betonu, po wcześniejszym jej wyskalowaniu dla stosowanej w projekcie receptury betonu.

Demontaż rusztowania należy dokonać po przeprowadzeniu wizualnej kontroli powierzchni elementów i po ewentualnym wykończeniu powierzchni elementów.

5.3.7. Wykończenie powierzchni betonu

Dla widocznych powierzchni betonowych obowiązują następujące wymagania:

I. w elementach obiektów wykonywanych z betonu monolitycznego należy zastosować beton w standardzie architektonicznym kategorii co najmniej BA2 [7] (tabela 17), spełniający co najmniej następujące wymagania:

a) beton taki nie powinien być zrealizowany jako dodatkowa, oddzielnie wykonana warstwa;

b) zastosowana technologia zapewnić powinna uzyskanie betonu, którego powierzchnia nie będzie wymagała napraw, szpachlowania lub stosowania innych powłok kryjących;

c) dla tej części powierzchni elementu, która po zakończeniu Robót pozostaje odkryta:

- szalunki powinny być tak wykonane i przygotowane, aby pozwoliło to uzyskać beton o jednolitej fakturze i barwie; dla deskowania ramowego zastosować dodatkowa warstwę sklejkowej; dla wszystkich rodzajów deskowań dopuszcza się zastosowanie specjalnych wkładów w postaci desek heblowanych, desek nieheblowanych lub matryc,

- w przypadku stosowania sklejkowych zastosować sklejkę trójwarstwową lub sklejkę o podwyższonej jakości (powłoka o gramaturze 220 g/m²),

Dopuszczalne jest zastosowanie aparatury pomiarowej do określania dojrzałości betonu, po wcześniejszym jej wyskalowaniu dla stosowanej w projekcie receptury betonu.
- w przypadku stosowania desek nieheblowanych powierzchnia deski powinna zostać odpowiednio przygotowana w celu zapobieżenia przylegania drobin drewna do betonu (mechaniczne usuwanie drobin i opalanie),
- dla wszystkich rodzajów poszycia deskowania zaleca się uszczelnienie styków poszycia;
- faktura powinna być tak dobrana, aby nie można było rozpoznać przerw technologicznych;
- otwory technologiczne (np. otwory odpływowe), kotwy i ściągi szalunkowe należy tak rozmieścić, aby ich układ współgrał z zaprojektowaną fakturą betonu, tzn. aby ślady po nich tworzyły estetyczny efekt wizualny, tzn. aby rozmieszczone one były symetrycznie w stosunku do siatki linii styków elementów szalunków, tak pionowych jak i poziomych – projekt deskowania należy przedstawić do zatwierdzenia przez Nadzór/Inżyniera;
- beton należy pozostawić w naturalnej kolorystyce; wymóg ten nie dotyczy gzymsów;
- powierzchnie podpór i konstrukcji oporowych o wysokości mniejszej od dostępnych wysokości płyt szalunkowych (w tym wielkogabarytowych płyt trójpłatowych) należy wykonać bez styków poziomych (lub zbliżonych do poziomu), a miejsca styków pionowych należy uszczelnić lub zamaskować elementami uszczelniająco-dekoracyjno-maskującymi;
- należy stosować elementy dystansowe prętów zbrojeniowych o możliwej najmniejszej powierzchni styku z deskowaniem, np. elementy dystansowe punktowe z betonu lub tworzywa sztucznego, elementy dystansowe listwowe (liniowe) z tworzywa sztucznego, wyklucza się stosowanie elementów dystansowych listwowych (liniowych) z betonu;

\textbf{d) kolory prefabrykowanych elementów gzymsowych wykonanych z betonu należy uzyskać przez barwienie w masie. Zastosowane pigmenty nie mogą pogarszać parametrów fizyczno-chemicznych betonu,}

\textbf{I. pęknięcia i rysy są niedopuszczalne,}
\textbf{II. równość górnej powierzchni konstrukcji nośnej, na której przewiduje się ułożenie hydroizolacji powinna być zgodna z wymaganiami producenta zastosowanej hydroizolacji i Specyfikacji Technicznej określającej warunki układania hydroizolacji,}
\textbf{III. kształtowanie odpowiednich spadków poprzecznych i podłużnych powinno następować podczas betonowania elementu; wyklucza się szpachlowanie konstrukcji po rozdeskowaniu; powierzchnię płyty powinno się wyrównywać podczas betonowania latami wibracyjnymi; odchyłka równości powierzchni zmierzone na łacie długości 4,0 m nie powinno przekraczać 1,0 cm,}
\textbf{IV. wszystkie powierzchnie poziome elementów powinny być zatarte w momencie tuż przed rozpoczęciem wiązania spoiwa, dotyczy to w szczególności powierzchni płyta, dla których należy zastosować odpowiednio wydajne zacieraczki mechaniczne; zabieg zacierania likwiduje wszystkie zainicjowane w pierwszej fazie tężenia mieszanki betonowej rysy skurczu plastycznego, zapobiegając tym samym ich propagacji już w trakcie dojrzewania betonu, czyli wskutek skurczu twardnienia, a jednocześnie zapewnia właściwe wyrównanie i przygotowanie powierzchni betonu do dalszych zabiegów technologicznych związanych z nakładaniem warstw izolacyjno-zabezpieczających,}
\textbf{V. ostre krawędzie betonu po rozdeskowaniu powinny być oszlifowane; jeżeli dokumentacja projektowa nie przewiduje specjalnego wykończenia powierzchni betonowych konstrukcji, to bezpośrednio po rozebraniu deskowań należy wszystkie wystające nierówności wyrównać za pomocą tarcz karborundowych i czystej wody,
VI. gładkość powierzchni powinna cechować się brakiem lokalnych progów, raków, w głębieniach i wybruszeń, wystających ziaren kruszywa, dopuszczalne są lokalne nierówności do 3 mm lub w głębieniach do 5 mm,

VII. wszystkie łączniki stalowe (druty, śruby itp.) użyte do montażu deskowania lub mające inne tymczasowe zastosowania, które pozostają na powierzchni betonu po rozdeskowaniu, należy przyciąć poniżej wykończonej powierzchni betonu do głębokości nie mniejszej niż 1 cm, a powstałe otwory należy wypełnić materiałem naprawczym.

<table>
<thead>
<tr>
<th>Średnie wymagania BA2</th>
<th>Obiekty inżynierskie</th>
<th>Tekstura*</th>
<th>Porowatość*</th>
<th>Równomier-</th>
<th>Pow. próbna</th>
<th>Kатегорie deskowa-</th>
<th>Koszty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T2</td>
<td>P2</td>
<td>RZ2</td>
<td>Zalecana</td>
<td>KD2</td>
<td>średnie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wysokie wymagania BA3</th>
<th>Obiekty wskazane przez Oddział, gdzie jest wymagana najwyższa jakość np. obiekty reprezentatywne w miastach</th>
<th>Tekstura*</th>
<th>Porowatość*</th>
<th>Równomier-</th>
<th>Pow. próbna</th>
<th>Kатегорie deskowa-</th>
<th>Koszty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T3</td>
<td>P3</td>
<td>RZ3</td>
<td>Wymagana</td>
<td>KD3</td>
<td>wysokie/bardzo wysokie</td>
</tr>
</tbody>
</table>

* Te wymogi/cechy zostały omówione szerzej w Tabeli 17a.
** Ogólny wygląd konstrukcji, istniejących lub nieistniejących różnic w odcieniu kolorystyki, można ocenić przeważnie po dłuższej żywotności konstrukcji (przynajmniej po kilku tygodniach).
*** Patrz: tabela 17b.

Tabela 17a. Wymagania dotyczące powierzchni betonowych architektonicznych uzyskiwanych w wyniku deskowania

| Tekstura, styk elementów deskowania | T1 | - w dużej mierze zamknięta powierzchnia z zaczynu cementowego (ewentualnie zaprawy),
|-----------------------------------|----| - zaczn cementowy/zaprawa występujące w złączach elementów deskowania nie powinny być większe niż: szerokość do ok. 20 mm i głębokość do ok. 10 mm,
| | | - dozwolony odcisk ramy elementu deskowania.
T2
- w dużej mierze jednorodna i zamknięta powierzchnia betonowa,
- zaczyn cementowy/zaprawa występujące w złączach elementów deskowania nie powinny być większe niż: szerokość do ok.10 mm i głębokość ok. 5 mm,
- dozwolony odcisk ramy elementu deskowania.

Dodatkowe wymagania:
- zapewnić ten sam rodzaj deskowania i jego przygotowania,
- zapewnić czystość deskowania oraz równe nałożenie środka antyadhezyjnego,
- należy ustalić sposób uszczelnienia styków deskowania,
- należy ustalić rodzaj wkładek dystansowych,
- zaleca się stosować te same płyty deskowań,
- zaleca się przygotowanie powierzchni próbnej.

T3
- gładka, zamknięta i w dużej mierze jednorodna powierzchnia betonowa
- zaczyn cementowy/zaprawa występujące w złączach elementów deskowania nie powinny być większe niż: szerokość do ok.3 mm,
- dalsze wymogi odnośnie np. złącz deskowania, odcisku ramy, należy szczegółowo ustalić.

Dodatkowe wymagania:
- jak dla T2,
- konieczne jest szczegółowe zaprojektowanie deskowania (styki, uszczelnienia, rozmieszczenie blatów itd.),
- należy chronić deskowania przed wpływem warunków atmosferycznych,
- zaleca się przygotowanie powierzchni próbnej.

Porowatość
- maksymalna liczba porów (w mm²) - ok.1500.

Dodatkowe wymagania:
- sprawdzić wzajemne oddziaływanie rodzaju betonu, środka antyadhezyjnego i deskowania,
- należy zapewnić ten sam rodzaj deskowania,
- należy zapewnić czystość deskowania i równomiernie nałożenie środka antyadhezyjnego,
- zaleca się przygotowanie powierzchni próbnej.

Równomierność zabarwienia
- równomiernie, wielkopowierzchniowe zmiany odcienia na jasny/ciemny są dopuszczalne,
- rdza i brudne zacieki są niedopuszczalne,
- różne rodzaje powierzchni deskowania (różne sklejki) jak również różnego rodzaju materiały wykończeniowe, są niedopuszczalne,
- dopuszczalna zmiana barwy powierzchni w wyniku zastosowania środka antygrafitti;
- ze względu na różny wpływ środków antygrafitti na barwę wymagana akceptacja rodzaju środka przed jego zastosowaniem.

Dodatkowe wymagania:
- należy ustalić czas mieszania betonu na co najmniej 60 sekund,
- należy przewidzieć wykonanie większej ilości powierzchni próbnych.
RZ3 - wielkopowierzchniowe zmiany zabarwienia, spowodowane różnego rodzaju materiałami wykończeniowymi, różnorodne rodzaje powierzchni deskowania oraz
- różna końcowa obróbka betonu dopuszczalna po akceptacji zmieniającego,
- niewielkie zmiany zabarwienia są dopuszczalne,
- rzda, brudne zacieki, wyraźnie widoczne poszczególne warstwy układanej mieszanki, jak również zmiany w zabarwieniu są nie dopuszczalne,
- konieczny jest wybór specjalnego i właściwego środka adhezyjnego.
- dopuszczalna zmiana barwy powierzchni w wyniku zastosowania środka antygrafitti;
- ze względu na różny wpływ środków antygrafitti na barwę wymagana akceptacja rodzaju środka przed jego zastosowaniem.
Dodatkowe wymagania:
- tak, jak dla RZ2,
- należy uwzględnić zmianę czasu rozdeskowania wynikającą z różnych warunków atmosferycznych,
- zaleca się tak zaplanować rozmieszczenie zbrojenia, aby uniemówliwić zetknięcie się buławy wibracyjnej z deskowaniem i zbrojeniem,
- należy przewidzieć miejsca zrzutu mieszanki do deskowania w różnych odstępach,
- geometria elementów konstrukcji i układ zbrojenia musi pozwalać na szybki proces betonowania,
- należy zachować w/c na poziomie ± 0.02 lub zachować konsystencję z dokładnością do ± 20 mm.
Uwaga! Nawet przy największej dbałości i zachowaniu zasad nie da się całkowicie uniknąć zmian odcienia betonu.

*Powierzchnia porów o średnicy Ω w granicach $2mm < \Omega < 15mm$.
**Powierzchnia porów na standardowej powierzchni kontrolnej o wymiarach 500 mm x 500 mm.
*** W przypadku stosowania deskowania chłonnego należy przyjąć maksymalną powierzchnię porów odpowiednio na poziomie P1 – do 3000mm2, P2 – do 2000mm2, P3 – do 1000mm2.

<table>
<thead>
<tr>
<th>Tabela 17b. Kategorie deskowania.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Otwory wiercone</td>
</tr>
<tr>
<td>dozwolone do napraw</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Otwory po gwoździach i śrubach</td>
</tr>
<tr>
<td>dozwolone bez odprysków</td>
</tr>
<tr>
<td>dozwolone jako miejsca napraw po uzgodnieniu ze zleceniodawcą</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td>niedopuszczalne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Uszkodzenie deskowania w wyniku działania wibratora pogrążalnego</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td>niedopuszczalne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Zadrapania</td>
</tr>
<tr>
<td>dozwolone jako miejsca napraw</td>
</tr>
<tr>
<td>dozwolone jako miejsca napraw po uzgodnieniu ze zleceniodawcą</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Resztki betonu</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Zaczn cementowy</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Małe fałdki, pomarszczenia sklejki, znajdujące się w obszarze</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
<tr>
<td>niedozwolone</td>
</tr>
</tbody>
</table>
5.3.7.1. **Naprawa wadliwie wykonanego betonu**

Wszystkie uszkodzenia powierzchni powinny być naprawione na koszt Wykonawcy. Metodę naprawy powierzchni betonowych zgodną z PN-EN-1504 oraz zgodną z [7].

5.3.7.1.1. **Zabrudzenia**

W przypadku zabrudzeń spowodowanych innymi pracami budowlanymi wykonywanymi już po wykonaniu elementu lub wynikającymi z niedoczyszczenia deskowania, można zastosować umycie umycie powierzchni betonu delikatnymi środkami czyszczącymi.

Uwaga: najbardziej skutecznym sposobem unikania zabrudzeń jest stosowanie odpowiednich zabezpieczeń (np. przez przykrycie matami lub foliami) wykonanego już betonu w trakcie wykonywania innych robót budowlanych.

5.3.7.1.2. **Pęcherze, raki i inne uszkodzenia**

W celu naprawy uszkodzeń betonu jak pęcherze, raki i inne wady powierzchni należy stosować zaprawy naprawcze drobno lub gruboziarniste lub ich kombinacje, w zależności od wielkości wady i wymaganej faktury. Naprawy należy wykonać zgodnie z projektem technologicznym i wykonać wg odrębnych specyfikacji. Należy dążyć do tego, aby naprawiane miejsca miały możliwie zbliżoną kolorystykę do pozostalej powierzchni.

Przed przystąpieniem do właściwej naprawy należy wykonać powierzchnie próbne w mało widocznym miejscu, w celu sprawdzenia kolorystyki zastosowanej zaprawy i przedstawić je Inżynierowi do zatwierdzenia.

5.3.8. **Roboty wykończeniowe**

Roboty wykończeniowe powinny być zgodne z dokumentacją projektową i WWORB. Do robót wykończeniowych należą prace związane z dostosowaniem wykonanych robót do istniejących warunków terenowych, takie jak:

- odtworzenie elementów czasowo usuniętych,
- roboty porządkujące otoczenie terenu robót.

6. **KONTROLA JAKOŚCI ROBÓT**

6.1. **Ogólne wymagania dotyczące kontroli jakości robót**

Ogólne zasady kontroli jakości robót podano w D-M-00.00.00. "Wymagania ogólne"

Badania i pomiary dzielą się na:

- badania i pomiary Wykonawcy – w ramach własnego nadzoru
- badania i pomiary kontrolne – w ramach nadzoru Zamawiającego.
W uzasadnionych przypadkach w ramach badań i pomiarów kontrolnych dopuszczana się wykonanie badań i pomiarów kontrolnych dodatkowych i/lub badań i pomiarów arbitrażowych.

Badania obejmują:
- pobranie próbek,
- zapakowanie próbek do wysyłki,
- transport próbek z miejsca pobrania do placówki wykonującej badania,
- przeprowadzenie badania,
- sprawozdanie z badań.

Pomiary obejmują terenową weryfikację cech elementu betonowego.

6.2. Badania i pomiary Wykonawcy

Wykonawca jest zobowiązany do przeprowadzania na bieżąco badań i pomiarów w celu sprawdzania czy jakość wykonanych Robót jest zgodna z postawionymi wymaganiami.

Badania i pomiary powinny być wykonywane z niezbędną starannością, zgodnie z obowiązującymi przepisami i w wymaganym zakresie. Badania i pomiary Wykonawca powinien wykonywać z częstotliwością gwarantującą zachowanie wymagań dotyczących jakości robót, lecz nie rzadziej niż wskazano to w WWiORB. Wyniki badań będą dokumentowane i archiwizowane przez Wykonawcę. Wyniki badań Wykonawca jest zobowiązany przekazywać Inżynierowi/Inspektorowi Nadzoru.

6.3. Badania i pomiary kontrolne

Badania i pomiary kontrolne są zlecane przez Inżyniera/Inspektora Nadzoru, a których celem jest sprawdzenie, czy jakość zastosowanych materiałów i wyrobów budowlanych (mieszanki betonowej i jej składników, cementów, kruszyw itp.) oraz gotowego betonu i elementu betonowego (wbudowany beton, połączenia itp.) spełniają wymagania określone w kontrakcie.

Pobieraniem próbek, wykonaniem badań i pomiarów na miejscu budowy zajmuje się Laboratorium Zamawiającego/Inżynier/Inspektor Nadzoru przy udziale lub po poinformowaniu przedstawicieli Wykonawcy. Zamawiający decyduje o wyborze Laboratorium Zamawiającego.

6.4. Badania i pomiary kontrolne dodatkowe

W wypadku uznania, że jeden z wyników badań lub pomiarów kontrolnych nie jest reprezentatywny dla ocenianego odcinka budowy, strony kontraktu mogą wystąpić o przeprowadzenia badań lub pomiarów kontrolnych dodatkowych. Badania kontrolne dodatkowe są wykonywane przez Laboratorium Zamawiającego.

Strony Kontraktu decydują wspólnie o miejscach pobierania próbek i wyznaczeniu elementów betonowych do oceny. Jeżeli element betonowy nie może być jednoznacznie i zgodnie wyznaczony, to element ten nie powinien być mniejszy niż 20% ocenianego obiektu.

6.5. Badania i pomiary arbitrażowe

Badania i pomiary arbitrażowe są powtórzeniem badań lub pomiarów kontrolnych i/lub kontrolnych dodatkowych, co do których istnieją uzasadnione wątpliwości ze strony Inżyniera/Inspektora Nadzoru, Zamawiającego lub Wykonawcy (np. na podstawie własnych badań).
Badania i pomiary arbitrażowe wykonuje się na wniosek strony kontraktu. Badania i pomiary arbitrażowe wykonuje bezstronne, akredytowane laboratorium (w tym inne laboratorium GDDKiA), które nie wykonywało badań lub pomiarów kontrolnych, przy udziale lub po poinformowaniu przedstawicieli stron.

W przypadku wniosku Wykonawcy zgode na przeprowadzenie badań i pomiarów arbitrażowych wyraża Inżynier/Inspektor Nadzoru po wcześniejszej analizie zasadności wniosku. Zamawiający akceptuje laboratorium, które przeprowadzi badania lub pomiary arbitrażowe.

6.6. **Badania przed przystąpieniem do robót**

Przed przystąpieniem do robót Wykonawca powinien:

- uzyskać wymagane dokumenty, dopuszczające wyroby budowlane do obrotu i powszechnego stosowania (certyfikaty zgodności, deklaracje właściwości użytkowych) i na ich podstawie sprawdzić zgodność właściwości materiałów i wyrobów przeznaczonych do wykonania robót z wymaganiami podanymi w WWiORB,

- wykonać własne badania materiałów i wyrobów przeznaczonych do wykonania robót, w celu sprawdzenia ich właściwości z wymaganymi w WWiORB.

Wszystkie dokumenty oraz wyniki badań Wykonawca przedstawia Inżynierowi/Inspektorowi Nadzoru do akceptacji.

6.7. **Kontrola deskowań i rusztowań**

Badania odbiorcze deskowań i rusztowań należy przeprowadzić po zbudowaniu, a przed rozpoczęciem ich eksploatacji pod kątem zgodności z projektem wykonawczym rusztowań i deskowań. Badania okresowe należy przeprowadzać w trakcie eksploatacji, przed każdą nową fazą robót oraz po mogących mieć wpływ na stan deskowań i rusztowań zjawiskach atmosferycznych (silnych wiatrach, intensywnych opadach, itp.), a także po ewentualnych awariach, uderzeniach montowanymi elementami obiektu mostowego, itp.

Badania elementów rusztowań i deskowań należy przeprowadzać w zależności od użytego materiału zgodnie z:

- PN-S-10050, w przypadku elementów stalowych,

- PN-S-10080, w przypadku konstrukcji drewnianych.

Każe rusztowanie podlega odbiorowi, w czasie którego należy sprawdzać:

- rodzaj użytego materiału na zgodność z projektem technologicznym,

- łączniki, złącza,

- poziomy górnych krawędzi przed obciążeniem i po obciążeniu oraz krawędzi dolnych stanowiących miarę odkształcenia posadowienia (niwelacyjnie),

- efektywności stężeń,

- wielkości podniesienia wykonawczego,

- przygotowanie podłoża i sposób przekazywania nacisków na podłoże.

Każe deskowanie powinno podlegać odbiorowi, przedmiotem kontroli powinny być:

- rodzaj użytego materiału na zgodność z projektem technologicznym,

- szczelność deskowań w płaszczynach i narożach,
poziom górnej krawędzi i powierzchni deskowań przed betonowaniem i po nim oraz porównanie z poziomem wymaganym.

Rusztowania i deskowania w czasie betonowania powinny być przedmiotem kontroli geodezyjnej w nawiązaniu do niezależnych reperów.

Kontrola stanu wyposażenia, oznakowania i zabezpieczeń deskowań i rusztowań powinna być prowadzona codziennie przez cały okres prowadzonych robót. Podczas budowy rusztowań i deskowań oraz podczas ich obciążania mieszanką betonową powinny być prowadzone badania geodezyjne w nawiązaniu do reperów państwowych. Pomiary te powinny być prowadzone również w czasie dojrzewania betonu oraz przy rozbiórce deskowań i rusztowań aż do wykonania próbnego obciążenia.

Ocena rusztowań powinna być przeprowadzona na podstawie uzyskanych wyników i stałej

6.8. Badania składników mieszanki betonowej

Badania składników mieszanki betonowej powinny być wykonane przed przystąpieniem do przygotowania mieszanki betonowej oraz podczas wykonywania robót betonowych.

Akceptacja dostaw składników betonu – cementu, kruszyw, domieszek i dodatków następuje na podstawie dokumentów związanych z wprowadzaniem wyrobów budowlanych do obrotu i stosowania, czyli oznakowanych znakiem CE lub znakiem B i dla których Wykonawca (Producent) dołączył Deklarację Właściwości Użytkowych (DWU) lub Krajową Deklarację Właściwości Użytkowych (KDWU), odniesionych do Europejskiej Normy Zharmonizowanej (ENh), Polskiej Normy wyrobu (PN), Europejskiej Oceny Technicznej (EOT) lub Krajowej Oceny Technicznej (KOT).

Wykonanie badań sprawdzających składniki mieszanki betonowej przed przystąpieniem do przygotowania mieszanki betonowej, czyli na etapie badań wstępnych, jak również bieżące badania kontrolne dostaw, są po stronie Producenta betonu i powinny swym zakresem być zgodne z zapisami księgi Zakładowej Kontroli Produkcji obowiązującej w danym zakładzie produkcyjnym.

Zakres badań składników mieszanki betonowej będący po stronie odbiorcy betonu (Wykonawcy, Inżyniera) powinien być określony w Specyfikacji Technicznej.

Zakres badań składników mieszanki betonowej będący po stronie Producenta betonu oraz odbiorcy betonu (Wykonawcy, Inżyniera) powinien co najmniej obejmować badania wskazane w dalszych punktach.

6.8.1. Badania cementu

Bezpośrednio przed użyciem cementu konieczne jest sprawdzenie, czy deklarowane właściwości cementu potwierdzają zgodność z wymaganiami PN-EN 197-1 lub PN-B-19707.

W przypadku wątpliwości co do jakości dostawy cementu Inżynier wydaje polecenie przeprowadzenia oznaczeń:

- wczesnej wytrzymałości na ściskanie oraz wytrzymałości na ściskanie po 28 dniach, według PN-EN 196-1,
- czasu wiązania według PN-EN 196-2,
stałości objętości według PN-EN 196-3.
Inne właściwości cementu powinny być określone i deklarowane przez producenta cementu.
Wyniki badań należy sprawdzić na zgodność z wymaganiami podanymi w PN-EN 197-1 lub PN-B-19707.

6.8.2. Badania kruszyw
Oznaczenie kategorii reaktywności osobno dla każdej frakcji kruszywa grubego i drobnego wg PB/1/18 należy przeprowadzać z częstotliwością określoną w pkt 6.4 Wytycznych [12].
W odniesieniu do pozostałych właściwości kruszyw, w przypadku dostarczonej partii kruszywa, której jakość budzi wątpliwości, należy przeprowadzić oznaczenie:
- składu ziarnowego według PN-EN 933-1
- kształtu ziaren według PN-EN 933-3 lub według PN-EN 933-4 (dot. kruszywa grubego),
- procentowej zawartości ziaren o powierzchni przekruszonej i łamanej wg PN-EN 933-5 (dot. kruszywa grubego),
- zawartości pyłów według PN-EN 933-1,
- zawartości substancji organicznych według PN-EN 1744-1,
- odporności kruszywa na rozdrabnianie według PN-EN 1097-2 (dot. kruszywa grubego),
- mrozooodporności według PN-EN 1367-1 (dot. kruszywa grubego),
Wyniki badań należy sprawdzić na zgodność z wymaganiami podanymi w pkt. 2.3.2.

6.8.3. Badanie wody
W przypadku, gdy nie jest używana woda wodociągowa badania należy wykonać zgodnie z PN-EN 1008.

6.8.4. Badanie domieszek i dodatków do betonu
Domieszki do betonu należy przed użyciem sprawdzić na zgodność z PN-EN 934-2, poprzez sprawdzenie ich oznakowania znakiem CE i sprawdzenie Deklaracji Właściwości Użytkowych.

6.9. Kontrola jakości mieszanki betonowej i betonu stwardniałego
6.9.1. Zakres kontroli i pobór próbek do badań
Kontroli podlegają następujące właściwości mieszanki betonowej:
- konsystencja mieszanki betonowej,
- zawartość powietrza w mieszance betonowej oraz betonu stwardniałego:
- wytrzymałość na ściskanie,
- odporność na działanie mrozu,
- odporność na penetrację wody pod ciśnieniem.

W kontroli właściwości mieszanki betonowej i betonu należy rozróżnić badania objęte obowiązkową kontrolą zgodności prowadzoną przez Producenta betonu według
częstotliwości i kryteriów ustalonych w normach PN-EN 206 i PN-B 06265, a zawartych również w wymaganiach Zakładowej Kontroli Produkcji oraz badania objęte nieobowiązkową z punktu widzenia normy PN-EN 206 kontrolą identyczności prowadzoną przez stronę odbierającą beton (Wykonawcę, Inżyniera).

W czasie Robót Wykonawca prowadzi kontrolę identyczności mieszanki betonowej i betonu na podstawie planu pobierania i badania próbek, które należy pobierać w miejscu rozładunku mieszanki betonowej z betonowozu lub w przypadku stosowania pomp do układania mieszanki, przy wylocie z pompy. Plan powinien zawierać m.in. podział obiektu (konstrukcji) na części podlegające osobnej ocenie, częstotliwość pobierania próbek do kontroli mieszanki betonowej i betonu. Plan kontroli identyczności betonu podlega akceptacji Inżyniera/Inspektora Nadzoru.

Próbkę mieszanki betonu samozagęszczalnego SCC wolno pobierać jedynie ze środka wylewanej z betonowozu strugi i przenosić w sposób wykluczający ich segregację. Kostki do badań należy wypełniać centrycznie przez zalewanie, a przy wypełnianiu form z łopatki musi być ona „okrącona” w sposób wykłuczający płynięcie grubego kruszywa do przodu i „zawijanie się” zaprawy do tyłu. Wypełnionych form nie wolno ustawiać w miejscach narażonych na wibracje (jak np. stopnie pracującej pompy do betonu, gdzie często pobiera się próbki).

6.9.2. Sprawdzenie konsystencji mieszanki betonowej

Sprawdzenie konsystencji przeprowadza się zgodnie z planem pobierania i badania próbek. Badanie konsystencji metodą opadu stożka przeprowadza się zgodnie z PN-EN 12350-2, dla mieszanek SCC badanie konsystencji przeprowadza się metodą rozpyłu stożka zgodnie z PN-EN 12350-8. Dodatkowe właściwości mieszanek SCC należy badać według określonej metody, zgodnie z normami przywołanymi w PN-EN 206.

Na stanowisku betonowania konsystencja powinna być sprawdzana co najmniej trzy razy na pierwsze 50 m³ mieszanki do ustabilizowania się konsystencji, a później każdorazowo przy wykonywaniu próbek do badania przy badaniu zawartości powietrza lub w przypadku wątpliwości związanych z jakością. Przy stosowaniu pomp do układania mieszanki betonowej wymaga się sprawdzenia konsystencji przy wylocie z pompy. Wykonawca na etapie zatwierdzania PZJ jest zobligowany do wskazania robót gdzie będzie występowało ryzyko jakiegokolwiek zagrożenia dla osób pobierających próbki i wykonujących badania. PZJ podlega zatwierdzeniu przez Inżyniera Kontraktu. W przypadku zagrożenia życia i zdrowia Zamawiający nie wymaga prowadzenia kontroli identyczności mieszanki betonowej przy wylocie pompy, fakt taki należy wskazać w protokole poboru prób

Pomiar konsystencji należy wykonać na próbce punktowej pobranej na początku rozładunku. Próbkę punktową należy pobrać po rozładowaniu około 0,3 m³ mieszanki zgodnie z PN-EN 12350-1.

Kryteria badania i oceny identyczności dla konsystencji wykonywanych przez odbiorcę betonu (Wykonawcę, Inżyniera) są takie same jak kryteria dla oceny zgodności dla tego parametru, wykonywanej przez Producenta betonu.

Maksymalne dopuszczalne odchylenia pojedynczego oznaczenia kontrolowanej konsystencji lub dodatkowych właściwości mieszanek SCC od granic przyjętej klasy podano w Tabeli 18.

W Tabeli 19 podano maksymalne dopuszczalne tolerancje pojedynczego oznaczenia kontrolowanej konsystencji lub właściwości dodatkowych mieszanek SCC od założonej wartości.
Tabela 18. Ocena zgodności w miejscu dostawy dotycząca klas konsystencji oraz właściwości dodatkowych mieszanek SCC

<table>
<thead>
<tr>
<th>Właściwość</th>
<th>Metoda badania</th>
<th>Maksymalna dopuszczalna odchyłka(^a) pojedynczych wyników badania, w miejscu dostawy, od wartości granicznych lub w przypadku konsystencji granic wyspecyfikowanej klasy</th>
<th>Dolna granica</th>
<th>Górna granica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opad stożka</td>
<td>EN 12350-2</td>
<td></td>
<td>-10 mm</td>
<td>+10 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-20 mm (^b)</td>
<td>+20 mm (^b)</td>
</tr>
<tr>
<td>Rozpływ stożka</td>
<td>EN 12350-8</td>
<td></td>
<td>Nie dopuszcza się odchyłek</td>
<td>Nie dopuszcza się odchyłek</td>
</tr>
<tr>
<td>Lepkość</td>
<td>EN 12350-8 lub EN 12350-9</td>
<td>Nie dopuszcza się odchyłek</td>
<td>Nie dopuszcza się odchyłek</td>
<td>Nie dopuszcza się odchyłek</td>
</tr>
<tr>
<td>Przepływalność</td>
<td>EN 12350-10 lub EN 12350-12</td>
<td>Nie dopuszcza się odchyłek</td>
<td>Nie dopuszcza się odchyłek</td>
<td>Nie dopuszcza się odchyłek</td>
</tr>
<tr>
<td>Odporność na segregację</td>
<td>EN 12350-11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Przy braku górnej lub dolnej granicy w odpowiednich klasach konsystencji, odchyłek nie stosuje się

\(^b\) Dotyczy wyłącznie konsystencji badanej na początku rozładunku betoniarki samochodowej lub urządzenia mieszającego

Tabela 19. Kryteria zgodności dotyczące założonych wartości dla konsystencji i lepkości

<table>
<thead>
<tr>
<th>Opad stożka</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość założona w mm</td>
<td>(\leq 40)</td>
</tr>
<tr>
<td>Tolerancja w mm</td>
<td>(\pm 10)</td>
</tr>
</tbody>
</table>

Średnica rozpływ stożka

<table>
<thead>
<tr>
<th>Wartość założona w mm</th>
<th>Wszystkie wartości</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerancja w mm</td>
<td>(\pm 50)</td>
</tr>
</tbody>
</table>

Lepkość \(t_{500}\)

<table>
<thead>
<tr>
<th>Wartość założona w s</th>
<th>Wszystkie wartości</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerancja w s</td>
<td>(\pm 1)</td>
</tr>
</tbody>
</table>
6.9.3. Sprawdzenie zawartości powietrza w mieszance betonowej

Sprawdzenie zawartości powietrza w mieszance betonowej przeprowadza się zgodnie z planem pobierania i badania próbek. Badanie zawartości powietrza w mieszance betonowej przeprowadza się zgodnie z PN-EN 12350-7. Na stanowisku betonowania zawartość powietrza w mieszance powinna być sprawdzana co najmniej trzy razy na pierwsze 50 m³ mieszanki do ustabilizowania się właściwej zawartości powietrza, a później każdorazowo przy wykonywaniu próbek do badania projektowanej wytrzymałości oraz dodatkowo, w przypadku wątpliwości związanych z jakością.

Różnice pomiędzy przyjętą zawartością powietrza w mieszance a kontrolowaną nie powinny być większe niż: \(-0,5\% / +1\%\). Zawartość powietrza w mieszance betonowej sprawdza się w miejscu dostawy betonu konstrukcyjnego napowietrzonego. Przy stosowaniu pomp do układania mieszanki betonowej wymaga się sprawdzenia zawartości powietrza w mieszance przy wylotcie.

6.9.4. Sprawdzenie wytrzymałości na ściskanie betonu

Próbki do badania wytrzymałości na ściskanie betonu wykonuje się zgodnie z planem pobierania i badania próbek. Na stanowisku betonowania należy wykonywać próbki o liczności określonej w planie, lecz nie mniej niż 6 próbek (co najmniej parami z tej samej próbki mieszanki betonowej) z jednego elementu lub grupy elementów betonowanych tego samego dnia oraz dodatkowo, w przypadku wątpliwości związanych z jakością i na polecenie Inżyniera/Inspektora Nadzoru.

Badanie wytrzymałości na ściskanie przeprowadza się zgodnie z PN-EN 12390-3 na próbkach sześciennych o boku 150 mm lub o walcowych o wymiarach 150/300 mm.

Sposób pobrania próbek mieszanki betonowej powinien być zgodny z PN-EN 12350-1. Próbki wykonuje się i pielęgnuje zgodnie z normą PN-EN 12390-2. Dopuszcza się oznaczenie wytrzymałości na ściskanie na próbkach sześciennych o boku 100 mm lub 200 mm, z zachowaniem następujących zależności:

- \(f_{c, \text{cube} (150 \text{ mm})} = 0,95 \times f_{c, \text{cube} (100 \text{ mm})} \), dla próbek o boku 100mm,
- \(f_{c, \text{cube} (150 \text{ mm})} = 1,05 \times f_{c, \text{cube} (200 \text{ mm})} \), dla próbek o boku 200mm.

Wynik badania powinien stanowić średnią z wyników dwóch lub więcej próbek do badania wykonanych z jednej próbki mieszanki i badanych w tym samym wieku. Jeżeli wartości badania różnią się o więcej niż 15 % od średniej, wyniki te należy pominąć.

Wytrzymałość betonu na ściskanie należy oznaczyć w zależności od rodzaju zastosowanego cementu zgodnie z PN-B-06265 9 (Tabela 20).
Tabela 20. Czas równoważny wykonywania badań betonu w zależności od rodzaju zastosowanego cementu

<table>
<thead>
<tr>
<th>Rodzaj cementu</th>
<th>Czas równoważny</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM I (R), CEM II/A (R),</td>
<td>28 dni</td>
</tr>
<tr>
<td>CEM I (N), CEM II/A (N), CEM II/B (N,R)</td>
<td>56 dni</td>
</tr>
<tr>
<td>CEM III/A</td>
<td>90 dni</td>
</tr>
</tbody>
</table>

W przypadku certyfikowanej kontroli produkcji uznać się, że określona objętość betonu należy do danej klasy jeżeli spełnia kryteria identyczności podane w Tabeli 21, przy czym przez certyfikowaną kontrolę produkcji należy rozumieć posiadanie przez Producenta betonu Certyfikatu Zakładowej Kontroli Produkcji obejmującego wszystkie wymagania załącznika C normy PN-EN 206.

Tabela 21. Kryteria identyczności dotyczące wytrzymałości na ściskanie w przypadku betonu wytwarzanego w warunkach certyfikowanej kontroli produkcji

<table>
<thead>
<tr>
<th>Liczba „n” wyników badań wytrzymałości na ściskanie na próbkach z określonej objętości</th>
<th>Kryterium 1</th>
<th>Kryterium 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>średnia z „n” wyników (f<sub>cm</sub>) N/mm<sup>2</sup></td>
<td>dowolny pojedynczy wynik (f<sub>c</sub>) N/mm<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Nie stosuje się</td>
<td>≥ f<sub>ck</sub> - 4</td>
</tr>
<tr>
<td>2-4</td>
<td>≥ f<sub>ck</sub> +1</td>
<td>≥ f<sub>ck</sub> - 4</td>
</tr>
<tr>
<td>5-6</td>
<td>≥ f<sub>ck</sub> +2</td>
<td>≥ f<sub>ck</sub> - 4</td>
</tr>
</tbody>
</table>

f_{cm} - średnia z n wyników badania wytrzymałości serii n próbek
f_{ck} - wytrzymałość charakterystyczna na ściskanie
f_c - pojedynczy wynik badania wytrzymałości z serii n próbek

6.9.5. Sprawdzenie odporności betonu na działanie mrozu

Sprawdzenie odporności betonu na działanie mrozu przeprowadza się na próbkach wykonanych na stanowisku betonowania zgodnie z planem pobierania i badania próbek, co najmniej raz z jednego elementu lub grupy elementów w okresie wykonywania obiektu, ale nie rzadziej niż jeden raz na 5000 m³ betonu.

Badanie odporności betonu na działanie mrozu przeprowadza się metodą zgodnie z Załącznikiem N normy PN-B-06265.

Badanie mrozoodporności należy rozpocząć w czasie równoważnym w zależności od rodzaju zastosowanego cementu (Tabela 20). Wymagany stopień mrozoodporności betonu jest osiągnięty, jeżeli po wymaganej liczbie cykli zamrażania i odmrażania (Tabela 21), spełnione są następujące warunki:

- próbka nie wykazuje pęknięć,
- łączna masa ubytków betonu nie przekracza 5 % masy próbek nie zamrażanych,
obniżenie wytrzymałości na ściskanie jest nie większe niż 20 % w stosunku do wytrzymałości próbek nie zamrażanych.

Tabela 21. Wymagana liczba cykli zamrażania/rozmażania dla danego stopnia mrozoodporności

<table>
<thead>
<tr>
<th>Stopień mrozoodporności betonu</th>
<th>Wymagana liczba cykli</th>
</tr>
</thead>
<tbody>
<tr>
<td>F200</td>
<td>200</td>
</tr>
<tr>
<td>F150</td>
<td>150</td>
</tr>
<tr>
<td>F100</td>
<td>100</td>
</tr>
</tbody>
</table>

Kryteria badania i oceny identyczności dla odporności betonu na działanie mrozu wykonywanych przez odbiorcę betonu (Wykonawcę, Inżyniera) są takie same jak kryteria dla oceny zgodności dla tego parametru, wykonywanej przez producenta betonu.

Próbki do sprawdzenia odporności betonu na działanie mrozu formuje się z mieszanki w miejscu dostawy betonu konstrukcyjnego napowietrzonego.

6.9.6. **Sprawdzenie odporności na penetrację wody pod ciśnieniem**

Sprawdzenie odporności na penetrację wody pod ciśnieniem przeprowadza się na 3 próbkach wykonanych na stanowisku betonowania zgodnie z planem pobierania i badania próbek, co najmniej raz z jednego elementu lub grupy elementów w okresie wykonywania obiektu, ale nie rzadziej niż jeden raz na 5000 m³ betonu.

Badanie głębokości penetracji wody pod ciśnieniem należy rozpocząć w czasie równoważnym w zależności od rodzaju zastosowanego cementu (Tabela 20).

Maksymalna głębokość penetracji wody pod ciśnieniem w każdej badanej próbce powinna być nie większa niż określona w pkt. 2.2 niniejszych WWiORB.

Kryteria badania i oceny identyczności dla głębokości penetracji wody pod ciśnieniem wykonywanych przez odbiorcę betonu (Wykonawcę, Inżyniera) są takie same jak kryteria dla oceny zgodności dla tego parametru, wykonywanej przez producenta betonu.

6.10. **Pobieranie próbek i badania**

Do Wykonawcy należy wykonywanie badań przewidzianych niniejszych WWiORB oraz gromadzenie, przechowywanie i przedkładanie Inżynierowi/Inspektorowi Nadzoru wyników badań składników mieszanki betonowej i betonu stwardniałego.

Laboratorium Zamawiającego zastrzega sobie prawo do przeprowadzenia badań kontrolnych i kontrolnych dodatkowych, w takim przypadku Inżynier/Inspektor Nadzoru jest zobligowany do wystawienia zlecenia na w/w badanie.
6.11. Badania betonu w konstrukcji

Wytrzymałość betonu na ściskanie może być określona na próbkach (rdzeniowych) wyciętych z elementu konstrukcji według PN-EN 12504-1 lub metodami nieniszczącymi według PN-EN 12504-2 lub PN-EN 12504-4. Dopuszcza się inne metody badań pośrednich i bezpośrednich betonu w konstrukcji, pod warunkiem zweryfikowania proponowanej w nich kalibracji cech wytrzymałościowych w konstrukcji na pobranych z konstrukcji odwiertach lub wykonanych wcześniej próbkach.

Interpretacji wyników badań należy dokonać według rozdz. 9 normy PN-EN 13791.

W przypadkach technicznie uzasadnionych Inżynier/Inspektor Nadzoru może zlecić przeprowadzenie dodatkowych badań mrozoodporności betonu wg PN-B-06265, na próbkach wyciętych z konstrukcji.

6.12. Tolerancje wymiarów betonowych konstrukcji mostowych

Podane niżej tolerancje wymiarów można traktować jako miarodajne tylko wtedy, gdy dokumentacja projektowa albo Specyfikacja Techniczna nie przewidują inaczej.

Dopuszczalne odchyłki wymiarowe od określonych w dokumentacji projektowej wynoszą:
- długość przęsła : ± 2 cm,
- rozpiętość usytuowania łożysk: ± 1 cm,
- oś podłużna w planie: ± 2 cm,
- usytuowanie w planie belek podłużnych i poprzecznych: ± 2 cm,
- wysokość dźwigara: + 0,5 % i - 0,2 %, lecz nie więcej niż 5 mm,
- szerokość dźwigara : + 0,4 % i -0,2 %, lecz nie więcej niż 3 mm,
- grubość płyt: + 1 % i - 0,5 %, lecz nie więcej niż ± 0,5 cm,
- rządne wysokościowe: ± 1 cm.

Tolerancje dla fundamentów:
- usytuowanie w planie: ± 5 cm (dla fundamentów o szerokości < 2 m: ± 2 cm)
- rzędne wierzchu lawy: ± 1 cm.
- płaszczyzny i krawędzie - odchylenie od pionu: ± 2 cm.

Tolerancje dla podpór masowych i słupowych:
- pochylenie ścian i słupów: 0,5 % wysokości (jednak dla słupów nie więcej niż 1,5 cm),
- wymiary w planie: ± 2 cm dla podpór masowych, ± 1 cm dla podpór słupowych,
- rzędne wierzchu podpory: ± 1 cm.

W ścianach oporowych odchyłki nie powinny przekraczać:
- 1 % wysokości w odniesieniu do nachylenia w pionie, lecz nie więcej niż 50 mm,
- ± 2 cm w odniesieniu do wymiarów w planie,
- ± 2 cm w odniesieniu do rzędnej górnej powierzchni budowli.

6.13. Kontrola wykończenia powierzchni betonowych

Jeżeli dokumentacja projektowa oraz WWiORB nie przewidują inaczej, wszystkie widoczne powierzchnie betonowe powinny być gładkie i mieć jednolitą barwę i fakturę. Na
powierzchniach tych nie mogą być widoczne żadne zabrudzenia, przebarwienia czy inne wady pozostawione przez wewnętrzną wykładzinę deskowań, która powinna być odpowiednio przymocowana do deskowania. Pęknięcia elementów konstrukcyjnych są niedopuszczalne.

Należy wykluczyć pustki, raki i wykruszenia. Lokalne ubytki należy wypełnić betonem (zaprawą naprawczą) o minimalnym skurczu i wytrzymałości nie mniejszej niż wytrzymałość betonu w konstrukcji o barwie zbliżonej do koloru pierwotnej powierzchni betonu. Wszystkie nieprawidłowości wykończenia powierzchni muszą być naprawione przez Wykonawcę.

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w D-M-00.00.00. „Wymagania ogólne”.

7.2. Jednostka obmiarowa

Jednostką obmiarową jest m³ (metr sześcienny) wbudowanego betonu danej klasy.

8. ODBIÓR ROBÓT

Ogólne zasady odbioru robót podano w D-M-00.00.00 „Wymagania ogólne”. Roboty uznaje się za wykonane zgodnie z Dokumentacją Projektową i WWiORB, jeżeli wszystkie badania i pomiary z zachowaniem tolerancji wg pkt. 6 niniejszych WWiORB dały wyniki pozytywne.

Do odbioru ostatecznego uwzględniane są wyniki badań i pomiarów kontrolnych, badań i pomiarów kontrolnych dodatkowych oraz badań i pomiarów arbitrażowych do wyznaczonych odcinków częściowych.

8.1. Zasady postępowania z wadliwie wykonanymi robotami

Jeżeli wystąpią wyniki negatywne dla materiałów i robót (nie spełniające wymagań określonych w WWiORB i opracowanych na ich podstawie STWiORB), to Inżynier/Inspektor Nadzoru/Zamawiający wydaje Wykonawcy polecenie przedstawienia programu naprawczego, chyba że na wniosek jednej ze stron kontraktu zostaną wykonane badania lub pomiary arbitrażowe (zgodnie z pkt. 6.5 niniejszych WWiORB), a ich wyniki będą pozytywne. Wykonawca w programie tym jest zobowiązany dokonać oceny wpływu na trwałość konstrukcji i przedstawić sposób naprawienia.

Na zastosowanie programu naprawczego wyraża zgodę Inżynier/Inspektor Nadzoru/Zamawiający.

W przypadku braku zgody Inżyniera/Inspektora Nadzoru/Zamawiającego na zastosowanie programu naprawczego wszystkie materiały i roboty nie spełniające wymagań podanych w odpowiednich punktach WWiORB zostaną odrzucone. Wykonawca wymieni materiały na właściwe i wykona prawidłowo roboty na własny koszt.

Jeżeli wymiana materiałów niespełniających wymagań lub wadliwie wykonane roboty spowodowują szkodę w innych, prawidłowo wykonanych robotach, to również te roboty powinny być ponownie wykonane przez Wykonawcę na jego koszt.

8.2. Odbiór robót zanikających i ulegających zakryciu

Odbiorowi robót zanikających i ulegających zakryciu podlegają:

- montaż deskowań i rusztowań,
- wykonanie betonu w konstrukcji ulegających zakryciu (np. fundamentów).
Odbiór tych robót powinien być zgodny z wymaganiami D-M-00.00.00. „Wymagania ogólne”.

9. **PODSTAWA PŁATNOŚCI**

9.1. **Ogólne ustalenia dotyczące podstawy płatności**

Ogólne ustalenia dotyczące podstawy płatności podano w D-M-00.00.00 „Wymagania ogólne”.

9.2. **Cena jednostki obmianowej**

Cena wykonania 1 m³ betonu obejmuje:

- prace pomiarowe i roboty przygotowawcze,
- oznakowanie robót,
- dostarczenie materiałów i sprzętu,
- wykonanie i uzgodnienia projektów technologicznych (w tym projektów deskowań i rusztowań),
- wykonanie operatów wodnoprawnych dla konstrukcji tymczasowych (np. rusztowania),
- na czas robót nad rzekami i ciekami, uzyskanie wszelkich uzgodnień i pozwoleń,
- opracowanie recept laboratoryjnych mieszanek betonowych,
- wykonanie deskowania oraz rusztowania z pomostem, oczyszczenie deskowania,
- przygotowanie i transport mieszanki,
- ułożenie mieszanki betonowej z zagęszczeniem i pielęgnacją,
- przygotowanie betonu i wykonanie warstw szczepnych w przypadku przerw roboczych,
- wykonanie dojazdów i stanowisk roboczych dla sprzętu,
- wykonanie przerw dylatacyjnych,
- wykonanie w konstrukcji wszystkich wymaganych dokumentacją projektową otworów jak również osadzenie potrzebnych zakotwień, marek, rur itp.,
- rozbiórkę deskowań, rusztowań i pomostów,
- oczyszczenie stanowiska pracy i usunięcie, będących własnością Wykonawcy, materiałów rozbiórkowych,
- wykonanie badań i pomiarów wymaganych w specyfikacji technicznej, odwietrzenie sprzętu.

Wszelkie inne czynności związane z prawidłowym wykonaniem i wbudowaniem betonu zgodnie z wymaganiami niniejszych WWiORB. Wszystkie roboty powinny być wykonane zgodnie z wymaganiami dokumentacji projektowej, niniejszych WWiORB, STWiORB.

9.3. **Sposób rozliczenia robót tymczasowych i prac towarzyszących**

Cena wykonania robót określonych niniejszym WWiORB obejmuje:

- roboty tymczasowe, które są potrzebne do wykonania robót podstawowych, ale nie są przekazywane Zamawiającemu i są usuwane po wykonaniu robót podstawowych,
- prace towarzyszące, które są niezbędne do wykonania robót podstawowych, niezaliczane do robót tymczasowych.
10. PRZEPISY ZWIĄZANE

10.1. Normy
1. PN-EN 196-1 Metody badania cementu—Część 1: Oznaczanie wytrzymałości
2. PN-EN 196-2 Metody badania cementu—Część 2: Analiza chemiczna cementu
3. PN-EN 196-3 Metody badania cementu—Część 3: Oznaczanie czasów wiązania i stałości objętości
4. PN-EN 197-1 Cement—Część 1: Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku
5. PN-EN 206 Beton—Wymagania, właściwości, produkcja i zgodność
6. PN-EN 932-3 Badanie podstawowych właściwości kruszyw - Procedura i terminologia uproszczonego opisu petrograficznego
7. PN-EN 933-1 Badanie geometrycznych właściwości kruszyw - Oznaczanie składu ziarnowego - Metoda przesiewania
8. PN-EN 933-3 Badania geometrycznych właściwości kruszyw - Część 3. Oznaczanie kształtu ziaren za pomocą wskaźnika płaskości
10. PN-EN 933-5 Badania geometrycznych właściwości kruszyw - Część 5. Oznaczanie procentowej zawartości ziaren o powierzchniach powstałych w wyniku przekruszenia lub łamania kruszyw grubych
11. PN-EN 934-1 Domieszki do betonu, zaprawy i zaczynu - Część 1. Wymagania podstawowe
12. PN-EN 934-2 Domieszki do betonu, zaprawy i zaczynu - Część 2. Domieszki do betonu - Definicje, wymagania, zgodność, znakowanie i etykietowanie
13. PN-EN 1008 Woda do zarobowa do betonu - Specyfikacja pobierania próbek, badanie i ocena przydatności wody zarobowej do betonu, w tym wody odzyskanej z procesów produkcji betonu
14. PN-EN 1097-2 Badanie mechanicznych i fizycznych właściwości kruszyw - Część 2: Metody oznaczania odporności na rozdrabnianie
15. PN-EN 1097-3 Badanie mechanicznych i fizycznych właściwości kruszyw - Część 3: Oznaczenie gęstości nasypowej i jamistości
16. PN-EN 1097-6 Badanie mechanicznych i fizycznych właściwości kruszyw - Część 6: Oznaczenie gęstości ziaren i nasiąkliwości
17. PN-EN 1367-1 Badanie właściwości cieplnych i odporności kruszyw na działanie czynników atmosferycznych - Część 1: Oznaczanie mrozoodporności
18. PN-EN 1367-3 Badanie właściwości cieplnych i odporności kruszyw na działanie czynników atmosferycznych - Część 3: Badanie bazaltowej zgorzeli słonecznej metodą gotowania
19. PN-EN 1367-6 Badanie właściwości cieplnych i odporności kruszyw na działanie czynników atmosferycznych - Część 6: Mrozoodporność w obecności soli
20. PN-EN 1744-1 Badanie chemicznych właściwości kruszyw - Analiza chemiczna
22. PN-EN 12350-1 Badania mieszanki betonowej—Część 1: Pobieranie próbek
23. PN-EN 12350-2 Badania mieszanki betonowej—Część 2: Badanie konsystencji metodą opadu stożka
24. PN-EN 12350-7 Badania mieszanki betonowej—Część 7: Badanie zawartości powietrza—Metody ciśnieniowe
25. PN-EN 12390-1 Badania betonu—Część 1: Kształt, wymiary i inne wymagania dotyczące próbek do badania i form
26. PN-EN 12390-2 Badania betonu—Część 2: Wykonywanie i pielęgnacja próbek do badań wytrzymałościowych
27. PN-EN 12390-3 Badania betonu—Część 3: Wytrzymałość na ściskanie próbek do badań
28. PN-EN 12390-8 Badania betonu—Część 8: Głębokość penetracji wody pod ciśnieniem
29. PN-EN 12620 Kruszywa do betonu
30. PN-EN 12504-1 Badania betonu w konstrukcjach - Część 1: Odwarty rdzeniowe - Wycinanie, ocena i badanie wytrzymałości na ściskanie
31. PN-EN 12504-2 Badania betonu w konstrukcjach - Część 2: Badanie nieniszczące. Oznaczanie liczby odbicia
32. PN-EN 12504-4 Badania betonu - Część 4: Oznaczanie prędkości fali ultradźwiękowej
33. PN-EN 13263-1 Pył krzemionkowy do betonu. Część 1. Definicje, wymagania i kryteria zgodności
34. PN-EN 13670 Wykonywanie konstrukcji z betonu
35. PN-EN 13791 Ocena wytrzymałości betonu na ściskanie w konstrukcjach i prefabrykowanych wyrobach betonowych
36. PN-B 19707 Cement. Cement specjalny. Skład, wymagania i kryteria zgodności
37. Eurokod 2 - PN-EN 1992 Projektowanie konstrukcji z betonu
38. ASTM C1260-14 Standard Test Method for Potential Alkali Reactivity of Aggregates
39. PN-EN 450-1 Popiół lotny do betonu. Część 1 : Definicje, specyfikacje i kryteria zgodności
40. ASTM C1293-18 Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction
41. PN-EN 12350-8 Badania mieszanki betonowej – Część 8: Beton samozagęszczalny - Badanie metodą rozpyłu stożka
42. PN-EN 1992-1-1 Eurokod 2: Projektowanie konstrukcji z betonu – Część 1-1: Reguły ogólne i reguły dla budynków;
43. PN-EN 1992-2 Eurokod 2: Projektowanie konstrukcji z betonu – Część 2: Mosty z betonu – Obliczanie i reguły konstrukcyjne;
10.2. Inne dokumenty

2. Rozporządzenie Parlamentu Europejskiego i Rady (UE) nr 305/2011 z dnia 9 marca 2011r., ustanawiające zharmonizowane warunki wprowadzania do obrotu wyrobów budowlanych i uchylające dyrektywę Rady 89/106/EWG

3. Ustawa z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (Dz. U. z 2019 r. poz. 266, z późn. zm.)

4. Rozporządzeniu Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. poz. 1966 z późn. zm.)

5. Rozporządzenie Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 r. w sprawie warunków technicznych, jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie (Dz.U. nr 63, poz. 735, z późn. zm.)

6. Ogólna Specyfikacja Techniczna D-M-00.00.00. Wymagania ogólne

