SPRAWOZDANIE

Temat TN-251
Ocena skuteczności dodatku włókien do mieszanek mineralno-asfaltowych

Kierownik Zakładu TN:

prof. dr hab. inż. Dariusz SYBILSKI

Zespół:

prof. dr hab. inż. Dariusz Sybilski
mgr inż. Renata Horodecka
mgr inż. Andrzej Wróbel
dr inż. Wojciech Bańkowski
Krzysztof Mirski

Technicy:

Teresa Gawenda
Jadwiga Migdalska
Tomasz Michalski
Dariusz Jasiński

Warszawa, czerwiec 2010
Spis treści

1. Podstawa pracy ... 4
2. Cel pracy .. 4
3. Program pracy ... 4
4. Weryfikacja dotychczasowych i poszukiwania nowych systemów oceny skuteczności zastosowania dodatku włókien do mieszanek mineralno-asfaltowych (Zadanie 1) ... 9
5. Zgromadzenie materiałów do badań oraz podstawowe badania materiałów wyjściowych (Zadanie 2 i 3) .. 19
6. Opracowanie składów mieszanek mineralno-asfaltowych przy uwzględnieniu różnej zawartości włókna i lepiszcza (Zadanie 4) .. 20
 6.1. Mieszanka BAWMS16 (wg Zeszytu 70) .. 20
 6.2. Mieszanki BAWMS16 (wg Zeszytu 70) z dodatkiem włókna .. 23
 6.3. Mieszanka ACWMS 16 20/30L (wg WT-2) ... 25
 6.4. Mieszanka AC WMS16 20/30L/W (wg WT-2) z włóknem .. 27
7. Metodyka badania .. 29
 7.1. Koleinowanie (duży aparat) .. 29
 7.2. Koleinowanie (mały aparat) ... 30
 7.3. Odporność na zmęczenie .. 31
 7.4. Moduł sztywności .. 34
 7.5. Wodoodporność .. 36
 7.6. Odporność na pękanie niskotemperaturowe .. 37
 7.7. Symulacja starzenia krótko- i długoterminowego .. 39
8. Wyniki badań ... 40
 8.1. Koleinowanie (Zadanie 5.1) .. 40
 8.2. Odporność na zmęczenie (Zadanie 5.2) .. 43
 8.3. Moduł sztywności (Zadanie 5.3) ... 48
 8.4. Wodoodporność (Zadanie 5.4) .. 50
 8.5. Odporność na pękanie niskotemperaturowe (Zadanie 5.5) ... 50
9. Analiza wyników (zadanie 6) ... 55
 9.1. BAWMS 16 20/30 wg recept TN/251/08-1 i TN/251/08-2 ... 55
 9.1.1. Właściwości podstawowe .. 55
 9.1.2. Odporność na koleinowanie ... 56
 9.1.3. Trwałość zmęczeniowa ... 57
 9.1.4. Sztywność .. 58
 9.1.5. Wodoodporność ... 61

str. 2
9.1.6. Odporność na niską temperaturę ..61
9.1.7. Podsumowanie wyników analizy ..62
9.2. ACWMS 16 20/30 wg recept TN/09/2L i TN/09/2L/W ..63
 9.2.1. Właściwości podstawowe ..63
 9.2.2. Odporność na koleinowanie ...63
 9.2.3. Trwałość zmęczeniowa ..64
 9.2.4. Sztywność ..66
 9.2.5. Ocena uzyskanych wyników..66
10. Opracowanie składów mieszanek do badań pakietów wielowarstwowych (zadanie 7) ..66
 10.1. Mieszanka AC8 (80B) wg rec. TN/251/09-3 ...67
 10.1.1. Projekt i podstawowe właściwości – AC8 (80B) ..67
 10.1.2. Odporność na koleinowanie - AC8 (80B) ..70
 10.1.3. Odporność na zmęczenie - AC8 (80B) ...72
 10.1.4. Moduł sztywności - AC8 (80B) ..73
 10.1.5. Wodoodporność - AC8 (80B) ..73
 10.2. Mieszanka ACWMS16 (20/30) wg rec. TN/251/09-4 ..74
 10.2.1. Projekt i podstawowe właściwości – ACWMS16 (20/30)74
 10.2.2. Odporność na koleinowanie – ACWMS16 (20/30)76
 10.2.3. Odporność na zmęczenie - ACWMS16 (20/30)77
 10.2.4. Moduł sztywności - ACWMS16 (20/30) ...77
 10.2.5. Wodoodporność - ACWMS16 (20/30) ..78
 10.3. Ocena zaprojektowanych mieszanek ..79
11. Badania pakietów warstw ...80
 11.1. Próbki do badań ..80
 11.2. Wyniki badań ..82
 11.3. Analiza wyników badań ..84
12. Podsumowanie i wnioski ..85
13. Literatura ..88
1. Podstawa pracy

Badania wykonano na podstawie umowy nr 2195/2008 (temat TN-251) z dnia 11.08.2008 r. zawartej pomiędzy Generalną Dyrekcją Dróg Krajowych i Autostrad w Warszawie, a Instytutem Badawczym Dróg i Mostów w Warszawie.

2. Cel pracy

Celem pracy jest sprawdzenie wpływu dodatku włókien polimerowych na właściwości mieszanek mineralno-asfaltowych. Wzmocnianie nawierzchni drogowych w dobie nasilającego się transportu samochodowego jest wielkim wyzwaniem dla naukowców i zarządców dróg. Jednym ze sposobów wzmocnienia jest zastosowanie włókien polimerowych, jako zbrojenia mieszanek mineralno-asfaltowych.

Wytrzymałość na rozciąganie włókna wykorzystywana jest do zbrojenia mieszanek mineralno-asfaltowej, zwiększając odporność na pękanie pod cyklicznym obciążeniem, czyli trwałość zmęczeniową mieszanek i nawierzchni drogowej oraz odporność niskotemperaturową. Dodatek włókien zasługuje na szczególną uwagę ze względów ekonomicznych, pozwoli wydłużyć okres eksploatacji nawierzchni drogowej. Rezultaty pracy pozwolą na porównanie właściwości nawierzchni wykonanych w technologii z włóknami i bez włókien. Wyniki pracy mogą być pomocne dla biur projektowych, inwestorów i przedsiębiorstw przy wyborze i zastosowaniu nowych technik przebudowy zniszczonych nawierzchni drogowych lub przy budowie nowych.

3. Program pracy

Program pracy zgodnie z założeniami umowy został podzielony na trzy etapy. W części pierwszej przewidziano badania podstawowe materiałów składowych, projektowanie recept oraz wybór mieszanek mineralno-asfaltowej do dalszych badań. W części drugiej przewidziano kontynuację szerokiego programu badań oraz analizę uzyskanych wyników badań pod kątem oceny wpływu zastosowanych włókien na wybrane właściwości mieszanek mineralno-asfaltowej (koleinowanie, zmęczenie, właściwości niskotemperaturowe oraz odporność na działanie wody). Na zakończenie pracy (etap III) przewidziano analizę wyników, opracowanie składu mieszanek mineralno-asfaltowej do warstwy antyzmęczeniowej, przeprowadzenie badań oraz opracowanie sprawozdania końcowego. Program pracy przedstawiono poniżej.

Etap I

Zadanie 1
Weryfikacja dotychczasowych i poszukiwania nowych systemów oceny skuteczności zastosowania dodatku włókien do mieszanek mineralno-asfaltowych

Zadanie 2
Zgromadzenie materiałów do badań (lepiszcze, kruszywo, włókna)

Zadanie 3
Podstawowe badania materiałów wyjściowych (asfalt, kruszywo)

Zadanie 4
Opracowanie składów mieszanek mineralno-asfaltowych przy uwzględnieniu różnej zawartości włókna i lepiszcza

Wykonanie badań podstawowych MMA:

- Określenie zawartości wolnych przestrzeni – oznaczenie gęstości i, gęstości objętościowej
- Wytypowanie wariantów recept do dalszych badań, na podstawie analiz uzyskanych wyników.

Zadanie 5
Badania wytypowanych mieszanek mineralno-asfaltowych

Zadanie 5.1
Badanie odporności na koleinowanie

Badania zostaną przeprowadzone metodą według PN-EN 12697-22 w dużym aparacie. Celem zadania będzie wyznaczenie odporności na koleinowanie wytypowanych mieszanek mineralno-asfaltowych.

Zadanie 5.2
Badanie odporności na zmęczenie

Zadanie 5.3
Badanie modułu sztywności
Badania zostaną przeprowadzone metodą belki czteropunktowo zginanej (w -10, 0, 10, 20°C), rozciągania pośredniego (w 10°C) i ściskania-rozciągania (w -10, 0, 10, 20°C) wg PN-EN 12697-26.

Celem zadania będzie wyznaczenie modułu sztywności i kąta przesunięcia fazowego oraz opracowanie krzywych wiodących

Zadanie 5.4

Badanie wodoodporności

Badania zostaną przeprowadzone metodą według PN-EN 12697-12.

Zadanie 5.5

Badanie odporności na pękanie niskotemperaturowe

Badania zostaną przeprowadzone metodą według AASHTO TP10-93 :"Standard test method for thermal restrained specimen tensile strength". Celem zadania będzie wyznaczenie temperatury pęknięcia i naprężenia przy pęknięciu wybranych mieszanek opracowanych w ramach zadania 4.

Uwaga:

Przewidziano wykonanie badań wyszczególnionych w zadaniu 5 dla dwóch wybranych wariantów mieszanek mineralno-asfaltowych (porównawczej oraz z dodatkiem włókien) w trzech stanach, tj.:

- oryginalnym (przed starzeniem),
- po starzeniu krótkoterminowym STOA (wg raportu SHRP A-383),
- po starzeniu długoterminowym LTOA (wg raportu SHRP A-383).

Etap II

c.d. Zadania 5 (badania po starzeniu długoterminowym LTOA)

Zadanie 5

Badania wytypowanych mieszanek mineralno-asfaltowych

Zadanie 5.1

Badanie odporności na koleinowanie
Badania zostaną przeprowadzone metodą według PN-EN 12697-22 w dużym aparacie.

Zadanie 5.2

Badanie odporności na zmęczenie

Badania zostaną przeprowadzone metodą belki czteropunktowo zginanej wg PN-EN 12697-24.

Zadanie 5.3

Badanie modułu sztywności

Badania zostaną przeprowadzone metodą belki czteropunktowo zginanej (w -10, 0, 10, 20°C), rozciągania pośredniego (w 10°C) i ściskania-rozciągania (w -10, 0, 10, 20°C) wg PN-EN 12697-26. Wyznaczenie modułu sztywności i kąta przesunięcia fazowego oraz opracowanie krzywych wiodących.

Zadanie 5.4

Badanie wodoodporności

Badania zostaną przeprowadzone metodą według PN-EN 12697-12 (U).

Zadanie 5.5

Badanie odporności na pękanie niskotemperaturowe

Badania zostaną przeprowadzone metodą według AASHTO TP10-93 :"Standard test method for thermal restrained specimen tensile strength".

Uwaga:

Przewidziano wykonanie badań wyszczególnionych w zadaniu 5 dla dwóch wybranych wariantów mieszanek mineralno- asfaltowych (porównawczej oraz z dodatkiem włókien) w trzech stanach, tj.:

- "O" - oryginalnym (przed starzeniem),
- "K"- po starzeniu krótkoterminowym STOA (wg raportu SHRP A-383 [1]),
- "D" - Starzenie długoterminowe LTOA (wg raportu SHRP A-383).
Zadanie 6.

Analiza otrzymanych wyników mieszanek mineralno-asfaltowych

Analiza uzyskanych wyników badań pod kątem oceny wpływu zastosowanych włókien na wybrane właściwości mieszanki mineralno-asfaltowej (koleinowanie, zmęczenie, właściwości niskotemperaturowe oraz odporność na działanie wody).

Etap III

Zadanie 7

Opracowanie składu mieszanki mineralno-asfaltowej drobnoziarnistej z włóknem do warstwy antyzmęczeniowej i wykonanie badań:

- Właściwości objętościowych
- Odporności zmęczeniowej mieszanki antyzmęczeniowej oraz pakietu warstw.

Zadanie 8

Sprawozdanie końcowe z pracy oraz opracowanie wniosków dotyczących oceny skuteczności dodatku włókien do mieszanek mineralno-asfaltowych.
4. Weryfikacja dotychczasowych i poszukiwania nowych systemów oceny skuteczności zastosowania dodatku włókien do mieszanek mineralno-asfaltowych (Zadanie 1)

Stosowanie włókien do poprawy właściwości mieszanek mineralno-asfaltowych ma swoją bogatą i długą tradycję [2, 3]. Wzrost zastosowania włókien obserwujemy zwłaszcza w ostatnich latach wraz z pojawieniem się mieszanek o nieciągłym uziarnieniu we Francji BBTM, w Wielkiej Brytanii asfaltu porowatego PA^1, w Niemczech SMA i upowszechnieniem tych mieszanek w całym świecie.

Stosowane włókna są różnego pochodzenia i o różnych właściwościach. Klasyfikację włókien ze względu na pochodzenie przedstawiono na rys. 1.

Rysunek 1 Klasyfikacja włókien

1 W opisie zastosowano terminologię według projektu Wymagań Technicznych Nawierzchni Asfaltowych Drogowych i Lotniskowych opracowanych w IBDiM
W wielu publikacjach opisane są różne sposoby poprawiania cech użytkowych mieszanek mineralno-bitumicznych, w wyniku których można uzyskać zwiększenie odporności nawierzchni na obciążenia, koleinowanie i spękania oraz odporności na działanie czynników atmosferycznych. Sposoby te polegają na poprawianiu właściwości podstawowych materiałów do produkcji mieszanek.

Cel i skuteczność stosowania włókien jako dodatku do asfaltu lub mieszanek mineralno-asfaltowych zależy od takich czynników jak kształt, stan powierzchni, jak też zdolność tworzenia połączeń poprzez adsorpcję fizyczną i chemiczną. Włókna stalowe i szklane (niebędące termoplastami) nie ulegają rozpuszczeniu w wysokiej temperaturze i nie następuje ich połączenie z asfaltem. Mogą zatem stanowić zbrojenie mieszanek. Niektóre z włókien syntetycznych mają natomiast na tyle niską temperaturę topnienia, że ulegają całkowitemu rozpuszczeniu w gorącym asfalcie, nie spełniając roli włókien, ale polimerowego modyfikatora asfaltu. Tak jest w wypadku włókien polietylenowych lub polipropylenowych.

Włókna azbestowe, które najwcześniej znalazły zastosowanie jako stabilizator w mieszance SMA, w większości krajów zostały wycofane ze stosowania z powodu szkodliwości zdrowiu pracowników i zostały zastąpione włóknami celulozowymi lub mineralnymi.

Obecnie do najczęściej stosowanych włókien w drogownictwie należą włókna celulozowe, a generalnie włókna pochodzenia roślinnego, włókna wełniane oraz wełna żużlowa lub wata szklana oraz ich mieszaniny. Efekt wynikający ze stosowania włókien do mieszanek, to poprawa odporności na pękanie i propagację pęknięć przynajmniej w takim zakresie, w jakim włókna te mogą tworzyć mikrowzmocnienia wewnątrz mieszanki mineralno-asfaltowej. Jako niekorzystne cechy włókien pochodzenia roślinnego, tj. włókien celulozowych, wymieniono ich degradację pod wpływem wody i utratę spójności pomiędzy kruszywem i spoiwem w mieszance, co powoduje utratę wytrzymałości mechanicznej mieszanki w trakcie eksploatacji nawierzchni. Włókna waty szklanej i wełny żużlowej nie ulegają uszkodzeniu wskutek działania wody, ale ich stosowanie jest szkodliwe dla otoczenia, ponieważ mogą rozprzestrzeniać się w powietrzu i powodować różne podrażnienia u ludzi.

Zestawienie wad i zalet włókien stosowanych w drogownictwie przedstawiono w tablicy 1.
Tablica 1 - Zalety i wady włókien

<table>
<thead>
<tr>
<th>Włókno</th>
<th>Zaleta</th>
<th>Wada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azbestowe</td>
<td>Duża chłonność asfaltu</td>
<td>Zagrożenie zdrowia</td>
</tr>
<tr>
<td>Celulozowe</td>
<td>Duża chłonność asfaltu</td>
<td>Podatność na wilgoć</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brak efektu (lub słaby) zbrojenia</td>
</tr>
<tr>
<td>Mineralne</td>
<td>Duża chłonność asfaltu</td>
<td>Brak efektu (lub słaby) zbrojenia</td>
</tr>
<tr>
<td>(skalne)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szklane</td>
<td>Efekt zbrojenia</td>
<td>Kruchość</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mała chłonność asfaltu</td>
</tr>
<tr>
<td>Syntetyczne:</td>
<td>Efekt zbrojenia</td>
<td>Mała chłonność asfaltu</td>
</tr>
<tr>
<td>poliestrowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polipropylenowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>akrylowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stalowe</td>
<td>Efekt zbrojenia</td>
<td>Brak chłonności asfaltu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rdzewienie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trudności w zagęszczaniu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pogorszenie charakterystyki powierzchniowej</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nawierzchni</td>
</tr>
</tbody>
</table>

Włókna są obecnie najpowszechniej stosowane jako stabilizator lepiszcza w mieszankach o nieciągłym uziarnieniu: SMA lub MNU oraz w technologii specjalnych, np. do „zbrojenia” warstw nawierzchni betonowych. W nawierzchniach asfaltowych w zasadzie włókna w celu wzmocnienia (zbrojenia) nawierzchni nie są stosowane, a jeśli to w celach eksperymentalnych. Najczęściej powodem jest koszt włókien.

Od dłuższego czasu w Instytucie Badawczym Dróg i Mostów prowadzone są prace nad szeroko pojętym zastosowaniem włókien do mieszanek mineralno-asfaltowych. W wyniku tych prac okazało się, że w trakcie procesu utylizacji wyrobów gumowych, wzmacnianych kordem tekstylnym, takich jak opony samochodowe, taśmy transporterów, odzyskiwany jest materiał w postaci zgremplowanych włókien kordu, o bardzo korzystnych cechach technicznych, jak odporność na działanie wody, elastyczność, wytrzymałość.
Kord tekstylny składa się z mieszaniny syntetycznych włókien polimerowych i/lub poliestrowych, i/lub wiskozowych, i/lub poliamidowych, i/lub para-aramidowych.

Zalety wynikające ze stosowania włókien, to przede wszystkim uzyskanie dodatku do mieszanek mineralno-asfaltowych, który jednocześnie może spełnić rolę stabilizatora mieszanki, przeciwdziałającego segregacji składników, modyfikatora, wpływającego na poprawę cech użytkowych mieszanki, ze względu na bardzo korzystne właściwości mechaniczne tekstylnego materiału włóknistego, jak wytrzymałość na rozciąganie i odporność na degradację pod wpływem wody i zmieniających się warunków atmosferycznych.

Te korzystne cechy włókien wynikają z tego, że otrzymany jest z kordu tekstylnego, stanowiącego wzmocnienie wyrobów gumowych, w tym opon, decydującego o wytrzymałości tych wyrobów, a więc jest zbudowany z jednego lub wielu rodzajów włókien najwyższej jakości, jak włókna para-aramidowe, poliamidowe, poliestrowe, wiskozowe. Dla przykładu włókno poliamidowe jest jednym z najlepszych pod względem wytrzymałości na rozciąganie przy małym ciężarze właściwym. Odznacza się również doskonałą wytrzymałością termiczną i stabilnością wymiarową oraz niewielkim wydłużeniem przy zerwaniu. Nie ulega korozji i jest odporno na działanie większości chemikaliów. Włókno to jest także niepalne, nieprzewodzące oraz odporno na zużycie.

Włókno poliamidowe jest wytwarzane z syntetycznego polimeru o bardzo dużej wytrzymałości na rozciąganie, o wysokim module sprężystości, twardości i odporności na ścieranie.

Również włókna poliestrowe odznaczają się dużą wytrzymałością na rozerwanie, zginanie i ścieranie, dobrą odpornością na działanie światła, czynników chemicznych (słabe kwasy i alkalia), są odporne biologicznie, bardzo słabo chłoną wodę.

Włókna wiskozowe, oznacza na oponach jako Rayon, są właściwie włóknami celulozowymi, ale o zdecydowanie zmienionych i poprawionych właściwościach.

Wstępne wyniki badań potwierdziły przypuszczenia, że włókno pochodzące z recyklingu opon samochodowych może stanowić doskonały materiał stosowany w produkcji mieszanek mineralno-asfaltowych.

Badaniom poddano mieszankę SMA oraz mieszankę betonu asfaltowego [4]. Oznaczono spływność mastyksu w mieszanice SMA metodą Schellenberga. Do badań

str. 12
przygotowano próbki z mieszanek SMA8 zarówno z dodatkiem włókien syntetycznych, jak również włókien celulozowych, z asfaltami zwykłym i modyfikowanym.

Na rysunku 2 przedstawiono wyniki badań spływności lepiszcza metodą Schellenberga.

Spływność Schellenberga z zastosowaniem włókna pochodzącego z recyklingu

![Diagram spływności Schellenberga]

Rysunek 2 Porównanie wyników spływności

Na podstawie rysunku 2 można stwierdzić, że dzięki zastosowaniu włókien syntetycznych możliwe jest skuteczne ograniczenie spływności mastyksu w mieszankach typu SMA.
Z przeprowadzonych badań zmęczeniowych mieszanek SMA8, wynika, że mieszanka z dodatkiem włókien syntetycznych przy takim samym odkształceniu przenosi nieco większą liczbę cykli obciążeń, porównywalne do mieszanki bez żadnego dodatku stabilizującego. Na podstawie uzyskanych wyników można stwierdzić, że najwyższe wartości uzyskała mieszanka SMA8 z dodatkiem włókien syntetycznych, a najniższe z dodatkiem włókna celulozowego. Świadczy to o tym, że dodatek włókien syntetycznych oprócz właściwości stabilizujących, posiada właściwości wzmacniające, dzięki czemu należy oczekiwać zwiększenia trwałości nawierzchni drogowej.

Badania zmęczeniowe wykonano również dla mieszanki mineralno-asfaltowej typu BAWMS z zastosowaniem twardego asfaltu 20/30.
Przebieg badania zmęczenia mieszanki mineralno-asfaltowej

Rysunek 4 Przebieg badania zmęczenia mieszanki z włóknem i bez włókna

Przeprowadzone badania zmęczeniowe wykazały, że mieszanka BAWMS25 z dodatkiem włókien syntetycznych charakteryzuje się lepszymi właściwościami zmęczeniowymi niż mieszanka porównawcza bez dodatku. Ilustruje to rys. 4, na którym trwałość zmęczeniowa, czyli liczba cykli, kiedy strata modułu sztywności osiągnie 50%, mieszanki BAWMS25 z dodatkiem włókien jest kilkukrotnie wyższa niż mieszanki porównawczej.

Mieszanka BAWMS25 – 20/30 została wytypowana celowo, ponieważ trudno jest uzyskać jednocześnie wysoki moduł sztywności i dobre parametry zmęczeniowe. Dzięki zastosowaniu twardego asfaltu 20/30 uzyskuje się mieszankę o wysokim module sztywności, a dobre właściwości zmęczeniowe zapewnia się poprzez wprowadzenie stosunkowo dużej zawartości asfaltu.

Przydatność włókien syntetycznych została również sprawdzona na odcinku testowym w ramach projektu SPENS, w którym uczestniczył IBDiM [25]. W tym przypadku włókno zostało dodane do mieszanki asfaltu piaskowego (APAF), która została ułożona jako najniżej położona warstwa asfaltowa (rysunek 5, odcinek D).
Zasadniczą cechą charakterystyczną tej konstrukcji jest zastosowanie warstwy antyzmęczeniowej, która zgodnie z założeniami koncepcji takiej warstwy powinna zwiększyć trwałość zmęczeniową konstrukcji. Jest to uzyskiwane przez odpowiednie umiejscowienie tej warstwy tj. w spodzie warstw asfaltowych czyli w miejscu, gdzie są największe odkształcenia rozciągające i gdzie najczęściej inicjowane jest zmęczenie konstrukcji oraz przez podwyższoną odporność zmęczeniową mieszanki do tej warstwy. Dobre właściwości zmęczeniowe mieszanki AP AF uzyskano poprzez drobnoziarniste uziarnienie mieszanki mineralno-asfaltowej (asfalt piaskowy) umożliwiające wprowadzenie większej ilości lepiszcza, zastosowanie asfaltu modyfikowanego ORBITON 80C oraz poprzez dodanie włókna polimerowego TOFIC. Dobre właściwości mieszanki AC AF zostały potwierdzone w laboratorium.

Odcinki testowe zostały poddane obciążeń z zastosowaniem symulatora pojazdów ciężkich (HVS). W ciągu dwóch tygodni nawierzchnia została poddana około 300 000 przejść koła o obciążeniu 60 i 80 kN. Konstrukcja z warstwą antyzmęczeniową wykazała bardzo dobre właściwości w stosunku do pozostałych konstrukcji. Zaobserwowano bardzo małą deformację trwałą warstwy ścieralnej (rysunek 6) oraz niewielki przyrost odkształceń w spodzie warstw asfaltowych – najmniejszy ze

Rysunek 5 Konstrukcje odcinków testowych w projekcie SPENS
wszystkich konstrukcji poddanych badaniom (rysunek 7 i 8). Dobre właściwości konstrukcji na odcinku D znalazły również potwierdzenie w badania FWD (rysunek 9). Zastosowanie warstwy antyzmęczeniowej wykonanej z asfaltu piaskowego z włóknem w spodzie warstw asfaltowych jest efektywnym sposobem na zwiększenie trwałości konstrukcji nawierzchni.

Rysunek 6 Przyrost deformacji warstwy ścieranej w badaniu HVS

Rysunek 7 Przyrost odkształceń poziomych w spodzie warstw asfaltowych w badaniu HVS
Rysunek 8 Porównanie odkształceń w spodzie warstw asfaltowych na początku i po zakończeniu badania HVS

Rysunek 9 Przyrost ugięcia (FWD) na poszczególnych odcinkach
5. Zgromadzenie materiałów do badań oraz podstawowe badania materiałów wyjściowych (Zadanie 2 i 3)

W celu realizacji przyjętego programu badań w niniejszej pracy przewidziano wykonanie projektu betonu asfaltowego o wysokim module sztywności BAWMS16 jako mieszanki porównawczej. Materiały wyjściowe do wykonania projektu BAWMS16 stanowiły:

Lepiszcze: asfalt drogowy 20/30 produkcji Orlen Asfalt

Kruszywo: mączka wapienna, piasek łamany granitowy 0/2 mm, bazalt 2/5, 5/8, 8/11, 11/16 mm,

Włókno: włókno pochodzące z recyklingu opon samochodowych, (materiał odzyskiwany w postaci zgremplowanych włókien kordu) Natomiast kord tekstylny składa się z mieszaniny syntetycznych włókien polimerowych i/lub poliestrowych, i/lub wiskozowych, i/lub poliamidowych, i/lub para-aramidowych

Środek adhezyjny: Wetfix BE produkcji Akzo Nobel.

A. **Lepiszce**

Do wykonania mieszanki mineralno-asfaltowej typu BAWMS16 zastosowano asfalt drogowy 20/30 z firmy PKN ORLEN. W tablicy 2 podane zostały podstawowe właściwości tego asfaltu (załącznik 1).

<table>
<thead>
<tr>
<th>Tablica 2 Podstawowe właściwości asfaltu 20/30</th>
</tr>
</thead>
<tbody>
<tr>
<td>WŁAŚCIWOŚCI</td>
</tr>
<tr>
<td>Penetracja w 25°C, 0,1 mm</td>
</tr>
<tr>
<td>Temperatura mięknięcia PiK, °C</td>
</tr>
<tr>
<td>Temperatura łamliwości wg Fraassa °C</td>
</tr>
</tbody>
</table>

B. **Kruszywo**

W tablicy 3 zostało przedstawione uziarnienie materiałów mineralnych oznaczone w laboratorium IBDiM dla poszczególnych frakcji kruszyw przewidzianych do wykonania mieszanki BAWMS16.
6. Opracowanie składów mieszanek mineralno-asfaltowych przy uwzględnieniu różnej zawartości włókna i lepiszca (Zadanie 4)

Zgodnie z programem pracy przygotowano skład mieszanek mineralno-asfaltowych o różnej zawartości włókna i lepiszca typu beton asfaltowy o wysokim module sztywności. Po wstępnej analizie wyników oraz w związku z wydaniem dokumentu „WT-2 Nawierzchnie asfaltowe na drogach publicznych 2008” zdecydowano o opracowaniu drugiego wariantu betonu asfaltowego o wysokim module sztywności ACWMS 16 (porównawcza) oraz z dodatkiem włókna polimerowego i przeprowadzeniu przewidzianych badań. W porównaniu do założeń pierwotnych projektu rozszerzony został więc program i zakres pracy.

6.1. Mieszanka BAWMS16 (wg Zeszytu 70)

<table>
<thead>
<tr>
<th>Wymiar oczek sita # [mm]</th>
<th>Mączka wapienna</th>
<th>Piasek łam. granitowy 0/2 mm</th>
<th>Bazalt 2/5 mm</th>
<th>Bazalt 5/8 mm</th>
<th>Bazalt 8/11 mm</th>
<th>Bazalt 11/16 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,1</td>
<td>23,2</td>
<td>54,2</td>
<td>6,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10,3</td>
<td>72,7</td>
<td>2,0</td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>34,1</td>
<td>3,2</td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,42</td>
<td>27,2</td>
<td>0,2</td>
<td></td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>10,8</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,18</td>
<td>0,4</td>
<td>11,3</td>
<td>0,1</td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,15</td>
<td>0,8</td>
<td>1,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,075</td>
<td>10,8</td>
<td>3,3</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><0,075</td>
<td>88,0</td>
<td>1,6</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,1</td>
</tr>
<tr>
<td>Łącznie</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
A. Skład MM, MMA

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Składniki</th>
<th>Mieszanka mineralna % m/m</th>
<th>Mieszanka mineralno-ASFaltowa % m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mączka wapienna</td>
<td>7,0</td>
<td>6,64</td>
</tr>
<tr>
<td>2</td>
<td>Piasek łamany granitowy 0/2 mm</td>
<td>28,0</td>
<td>26,54</td>
</tr>
<tr>
<td>3</td>
<td>Bazalt 2/5 mm</td>
<td>17,0</td>
<td>16,12</td>
</tr>
<tr>
<td>4</td>
<td>Bazalt 5/8 mm</td>
<td>17,0</td>
<td>16,12</td>
</tr>
<tr>
<td>5</td>
<td>Bazalt 8/11 mm</td>
<td>14,0</td>
<td>13,27</td>
</tr>
<tr>
<td>6</td>
<td>Bazalt 11/16 mm</td>
<td>17,0</td>
<td>16,12</td>
</tr>
<tr>
<td>7</td>
<td>ASFalt drogowy 20/30</td>
<td>-</td>
<td>5,18</td>
</tr>
<tr>
<td>8</td>
<td>WETFIX BE</td>
<td>-</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Razem</td>
<td>100,0</td>
<td>100</td>
</tr>
</tbody>
</table>

W mieszaninie zastosowano środek adhezyjny: WETFIX BE (0,3 % m/m w stosunku do ASFaltu).

B. Krzywa uziarnienia i uziarnienie mieszanki mineralnej

<table>
<thead>
<tr>
<th>Sito #, mm</th>
<th>Skład frakcji (%)</th>
<th>Pozostaje na sici (%)</th>
<th>Przechodzi przez sito (%)</th>
<th>Krzywe graniczne Wg PN-S-96025:2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dolna</td>
</tr>
<tr>
<td>20</td>
<td>67,0</td>
<td>15,7</td>
<td>33,00</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>10,13</td>
<td>22,87</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>9,6</td>
<td>7,66</td>
<td>15,21</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>8,0</td>
<td>3,22</td>
<td>8,95</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>6,3</td>
<td>0,42</td>
<td>8,53</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>4,0</td>
<td>0,3</td>
<td>6,82</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>2,0</td>
<td>26,18</td>
<td>1,71</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td><0,075</td>
<td>6,82</td>
<td>6,82</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

str. 21
Rysunek 10 Krzywa uziarnienia mieszanki mineralnej BAWMS16 do warstwy wiąjącej

C. Właściwości mieszanki mineralno-asfaltowej, o składzie optymalnym

Tablica 6 Zbadane właściwości mieszanki BAWMS16, o składzie optymalnym zawartość asfaltu Am=5,2 % m/m

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Właściwości</th>
<th>Wyniki</th>
<th>Wymagania wg Zeszytu 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gęstość objętościowa mieszanki-mineralnej, g/cm³</td>
<td>2,908</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Gęstość objętościowa mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,649</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Gęstość strukturalna mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,582</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Wolna przestrzeń w mieszance mineralno-asfaltowej, % v/v</td>
<td>2,5</td>
<td>od 1,0 do 4,0</td>
</tr>
<tr>
<td>5</td>
<td>Wypełnienie asfaltem wolnej przestrzeni, % v/v</td>
<td>84,2</td>
<td>74 do 90</td>
</tr>
<tr>
<td>6</td>
<td>Stabilność wg Marshalla w 60°C, kN</td>
<td>12,3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Odkształcenie wg Marshalla w 60°C, mm</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Moduł sztywności pełzania pod obciążeniem statycznym w 40°C, MPa</td>
<td>40,7</td>
<td>≥ 21,0</td>
</tr>
</tbody>
</table>
6.2. Mieszanki BAWMS16 (wg Zeszytu 70) z dodatkiem włókna

Wstępnie ustalono skład mieszanki porównawczej BAWMS16 – bez dodatku włókien (pkt. 6.1). Następnie zostały sprawdzone warianty mieszanki BAWMS16 o takim samym składzie mineralnym z różną zawartością włókien oraz z inną zawartością asfaltu. Badane mieszanki:

- BAWMS16 - o zawartości asfaltu 5,0%
- BAWMS16 – porównawcza o zawartość asfaltu 5,2%
- BAWMS16 – z dodatkiem 0,2% włókien, o zawartość asfaltu 5,2%,
- BAWMS16 – z dodatkiem 0,3% włókien, o zawartość asfaltu 5,2%
- BAWMS16 – z dodatkiem 0,5% włókien, o zawartość asfaltu 5,2%
- BAWMS16 – z dodatkiem 0,5% włókien, o zawartość asfaltu 5,4%

Zestawienie wyników badań powyższych mieszanek zawiera tablica 7.

Na podstawie uzyskanych wyników do dalszych prac wytypowane zostały mieszanki:

- BAWMS16 – porównawcza o zawartość asfaltu 5,2% (oznaczenie „P”)
- BAWMS16 – z dodatkiem 0,3% włókien, o zawartość asfaltu 5,2% (oznaczenie „W”)

str. 23
Tablica 7 Zbiórce zestawienie zbadanych właściwości mieszanki porównawczej oraz mieszanek z różną zawartością włókna i lepiszcza

<table>
<thead>
<tr>
<th>Skład Właściwości</th>
<th>Rodzaj mieszanki</th>
<th>BAWMS16 porównawcza</th>
<th>BAWMS16 z dodatkiem WŁÓKNA</th>
<th>Wymagania wg Zeszytu 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zawartość asfaltu Am</td>
<td>5,0</td>
<td>5,2</td>
<td>5,2</td>
<td>5,2</td>
</tr>
<tr>
<td>Zawartość włókna</td>
<td>-</td>
<td>-</td>
<td>0,2</td>
<td>0,5</td>
</tr>
<tr>
<td>Rodzaj asfaltu</td>
<td></td>
<td></td>
<td></td>
<td>20/30</td>
</tr>
<tr>
<td>Gęstość objętościowa mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,658</td>
<td>2,649</td>
<td>2,635</td>
<td>2,626</td>
</tr>
<tr>
<td>Gęstość strukturalna mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,576</td>
<td>2,582</td>
<td>2,559</td>
<td>2,519</td>
</tr>
<tr>
<td>Wolna przestrzeń w mieszance mineralno-asfaltowej, % v/v</td>
<td>3,1</td>
<td>2,5</td>
<td>2,9</td>
<td>4,0</td>
</tr>
<tr>
<td>Wypełnienie asfaltem wolnej przestrzeni, % v/v</td>
<td>80,5</td>
<td>84,2</td>
<td>81,9</td>
<td>75,5</td>
</tr>
<tr>
<td>Stabilność wg Marshalla w 60˚C, kN</td>
<td>12,5</td>
<td>12,3</td>
<td>11,5</td>
<td>10,9</td>
</tr>
<tr>
<td>Odkształcenie wg Marshalla w 60˚C, mm</td>
<td>3,6</td>
<td>3,7</td>
<td>4,2</td>
<td>3,6</td>
</tr>
<tr>
<td>Moduł sztywności pełzania pod obciążeniem statycznym w 40˚C, MPa</td>
<td>40,7</td>
<td>31,2</td>
<td>26,95</td>
<td>35,1</td>
</tr>
</tbody>
</table>

MMA porównawcza do dalszych badań „P”

MMA z włóknem do dalszych badań „W”

str. 24
6.3. Mieszanka ACWMS 16 20/30L (wg WT-2)

A. Informacje ogólne

Podstawa projektu: WT-2 Nawierzchnie Asfaltowe 2008

B. Składniki mieszanki

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Symbol</th>
<th>Rodzaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mączka wapienna</td>
<td>wypełniacz</td>
</tr>
<tr>
<td>2</td>
<td>Granit 0/2 mm</td>
<td>kruszywo drobne granitowe</td>
</tr>
<tr>
<td>3</td>
<td>Bazalt 2/5 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>4</td>
<td>Bazalt 5/8 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>5</td>
<td>Bazalt 8/11 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>6</td>
<td>Bazalt 11/16 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>7</td>
<td>Asfalt 20/30</td>
<td>asfalt drogowy z LOTOS Asfalt – Gdańsk</td>
</tr>
<tr>
<td>8</td>
<td>WETFIX BE</td>
<td>Środek adhezyjny Akzo Nobel</td>
</tr>
</tbody>
</table>

C. Uziarnienie materiałów mineralnych

<table>
<thead>
<tr>
<th>Wymiary oczek sita # [mm]</th>
<th>Mączka wapienna</th>
<th>Granit 0/2 mm</th>
<th>Bazalt 2/5 mm</th>
<th>Bazalt 5/8 mm</th>
<th>Bazalt 8/11 mm</th>
<th>Bazalt 11/16 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>4,9</td>
</tr>
<tr>
<td>11,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>6,6</td>
</tr>
<tr>
<td>8</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,3</td>
<td>68,7</td>
<td>12,9</td>
</tr>
<tr>
<td>5,6</td>
<td>0,0</td>
<td>1,6</td>
<td>71,9</td>
<td>20,5</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,0</td>
<td>9,8</td>
<td>24,3</td>
<td>2,8</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>0,125</td>
<td>2,23</td>
<td>69,5</td>
<td>0,2</td>
<td>0,9</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>0,063</td>
<td>13,05</td>
<td>13,5</td>
<td>0,1</td>
<td>0,2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td><0,063</td>
<td>84,72</td>
<td>7,2</td>
<td>0,3</td>
<td>0,1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Łącznie</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

D. Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Składniki</th>
<th>Mieszanka mineralna, % m/m</th>
<th>Mieszanka mineralno-asfaltowa, % m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mączka wapienna</td>
<td>5,0</td>
<td>4,78</td>
</tr>
<tr>
<td>2</td>
<td>Granit 0/2 [mm]</td>
<td>36,0</td>
<td>34,38</td>
</tr>
<tr>
<td>3</td>
<td>Bazalt 2/5 [mm]</td>
<td>6,0</td>
<td>5,73</td>
</tr>
<tr>
<td>4</td>
<td>Bazalt 5/8 [mm]</td>
<td>8,0</td>
<td>7,64</td>
</tr>
<tr>
<td>5</td>
<td>Bazalt 8/11 [mm]</td>
<td>20,0</td>
<td>19,1</td>
</tr>
<tr>
<td>6</td>
<td>Bazalt 11/16 [mm]</td>
<td>25,0</td>
<td>23,87</td>
</tr>
<tr>
<td>7</td>
<td>Asfalt 20/30</td>
<td>-</td>
<td>4,49</td>
</tr>
<tr>
<td>8</td>
<td>WETFIX BE</td>
<td>-</td>
<td>0,01</td>
</tr>
<tr>
<td>Razem</td>
<td></td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

W mieszance zastosowano środek adhezyjny: WETFIX BE (0,3 % m/m w stosunku do asfaltu).
E. Krzywa uziarnienia i uziarnienie mieszanki mineralnej ACWMS 16 20/30L do warstwy wiążącej

![Krzywa uziarnienia ACWMS 16 20/30L](image)

Rysunek 11 Krzywa uziarnienia mieszanki mineralnej ACWMS 16 20/30L

F. Uziarnienie mieszanki mineralnej

<table>
<thead>
<tr>
<th>Sito #, Mm</th>
<th>Pozostaje na sicie, (%)</th>
<th>Przechodzi przez sito, (%)</th>
<th>Uziarnienie wg WT-2 2008 wobec ACWMS 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dolne</td>
</tr>
<tr>
<td>22,4</td>
<td>100,0</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>98,8</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>11,2</td>
<td>77,13</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>59,9</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>5,6</td>
<td>49,8</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>38,08</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>0,125</td>
<td>12,52</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>0,063</td>
<td>6,93</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>< 0,063</td>
<td>100</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

G. Zbadane właściwości mieszanki mineralno-asfaltowej ACWMS 16 20/30L, o składzie optymalnym dla zawartości asfaltu Am=4,5 % m/m

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Właściwości</th>
<th>Wyniki</th>
<th>Wymagania wg WT-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gęstość objętościowa mieszanki-mineralnej, g/cm³</td>
<td>2,873</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Gęstość mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,656</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Gęstość objętościowa mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,579</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Zawartość wolnych przestrzeni, %v/v</td>
<td>2,9</td>
<td>V_{min}2,0 V_{max}4,0</td>
</tr>
<tr>
<td>5</td>
<td>Wypełnienie asfaltem wolnej przestrzeni, % v/v</td>
<td>79,7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Odporność na deformacje trwale (metoda B w powietrzu, 60°C, 10000 cykli)</td>
<td>0,38</td>
<td>WTS_{AIR} 0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,8</td>
<td>PRD_{AIR} 3,0</td>
</tr>
<tr>
<td>7</td>
<td>Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C</td>
<td>85,9</td>
<td>ITSR_{80}</td>
</tr>
</tbody>
</table>
6.4. Mieszanka AC WMS16 20/30L/W (wg WT-2) z włóknem

A. Informacje ogólne

Podstawa projektu: WT-2 Nawierzchnie Asfaltowe 2008

B. Składniki mieszanki

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Symbol</th>
<th>Rodzaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mączka wapienna</td>
<td>wypełniacz</td>
</tr>
<tr>
<td>2</td>
<td>Granit 0/2 mm</td>
<td>kr. dr. gran.</td>
</tr>
<tr>
<td>3</td>
<td>Bazalt 2/5 mm</td>
<td>Gryś</td>
</tr>
<tr>
<td>4</td>
<td>Bazalt 5/8 mm</td>
<td>Gryś</td>
</tr>
<tr>
<td>5</td>
<td>Bazalt 8/11 mm</td>
<td>Gryś</td>
</tr>
<tr>
<td>6</td>
<td>Bazalt 11/16 mm</td>
<td>Gryś</td>
</tr>
<tr>
<td>7</td>
<td>Asfalt 20/30</td>
<td>asfalt drogowy z LOTOS Asfalt – Gdańsk</td>
</tr>
<tr>
<td>8</td>
<td>WETFIX BE</td>
<td>Środek adhezyjny Akzo Nobel</td>
</tr>
<tr>
<td>9</td>
<td>Włókno polimerowe</td>
<td></td>
</tr>
</tbody>
</table>

C. Uziarnienie materiałów mineralnych

<table>
<thead>
<tr>
<th>Wymiar oczek sita # [mm]</th>
<th>Mączka wapienna</th>
<th>Granit 0/2 mm</th>
<th>Bazalt 2/5 mm</th>
<th>Bazalt 5/8 mm</th>
<th>Bazalt 8/11 mm</th>
<th>Bazalt 11/16 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>4,9</td>
</tr>
<tr>
<td>11,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,3</td>
<td>667</td>
</tr>
<tr>
<td>8</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,3</td>
<td>68,7</td>
</tr>
<tr>
<td>5,6</td>
<td>0,0</td>
<td>0,0</td>
<td>1,6</td>
<td>71,9</td>
<td>25,0</td>
<td>61,2</td>
</tr>
<tr>
<td>2</td>
<td>0,0</td>
<td>9,8</td>
<td>94,4</td>
<td>24,3</td>
<td>2,8</td>
<td>6,0</td>
</tr>
<tr>
<td>0,125</td>
<td>2,23</td>
<td>69,5</td>
<td>3,8</td>
<td>0,3</td>
<td>9,0</td>
<td>0,0</td>
</tr>
<tr>
<td>0,063</td>
<td>13,05</td>
<td>13,5</td>
<td>0,1</td>
<td>0,1</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td><0,063</td>
<td>84,72</td>
<td>7,2</td>
<td>0,1</td>
<td>0,1</td>
<td>0,3</td>
<td>0,1</td>
</tr>
<tr>
<td>Łącznie</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

D. Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Składniki</th>
<th>Mieszanka mineralna, % m/m</th>
<th>Mieszanka mineralno-asfaltowa, % m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mączka wapienna</td>
<td>5,0</td>
<td>4,78</td>
</tr>
<tr>
<td>2</td>
<td>Granit 0/2 [mm]</td>
<td>36,0</td>
<td>34,38</td>
</tr>
<tr>
<td>3</td>
<td>Bazalt 2/5 [mm]</td>
<td>6,0</td>
<td>5,73</td>
</tr>
<tr>
<td>4</td>
<td>Bazalt 5/8 [mm]</td>
<td>8,0</td>
<td>7,64</td>
</tr>
<tr>
<td>5</td>
<td>Bazalt 8/11 [mm]</td>
<td>20,0</td>
<td>19,1</td>
</tr>
<tr>
<td>6</td>
<td>Bazalt 11/16 [mm]</td>
<td>25,0</td>
<td>23,87</td>
</tr>
<tr>
<td>7</td>
<td>Asfalt 20/30</td>
<td>-</td>
<td>4,49</td>
</tr>
<tr>
<td>8</td>
<td>WETFIX BE</td>
<td>-</td>
<td>0,01</td>
</tr>
<tr>
<td>Razem</td>
<td></td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

W mieszance zastosowano środek adhezyjny: WETFIX BE (0,3 % m/m w stosunku do asfaltu) oraz włókna polimerowego (0,3 % m/m w stosunku do MM)
E. Krzywa uziarnienia i uziarnienie mieszanki mineralnej ACWMS 16 20/30L/W do warstwy wiążącej

F. Uziarnienie mieszanki mineralnej

<table>
<thead>
<tr>
<th>Sito #, Mm</th>
<th>Pozostaje na sitie, (%)</th>
<th>Przechodzi przez sito, (%)</th>
<th>Uziarnienie wg WT-2 2008 wobec ACWMS 16</th>
<th>Wymagania wg WT-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dolne</td>
<td>Górne</td>
</tr>
<tr>
<td>22,4</td>
<td>100,0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>1,22</td>
<td>98,8</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>11,2</td>
<td>21,65</td>
<td>77,13</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>17,23</td>
<td>59,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5,6</td>
<td>10,1</td>
<td>49,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>11,72</td>
<td>38,08</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>0,125</td>
<td>25,56</td>
<td>12,52</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>0,063</td>
<td>5,59</td>
<td>6,93</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>< 0,063</td>
<td>6,93</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

G. Zbadane właściwości mieszanki mineralno-asfaltowej ACWMS 16 20/30L/W, o składzie optymalnym dla zawartości asfaltu Am=4,5 % m/m

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Właściwości</th>
<th>Wynik</th>
<th>Wymagania wg WT-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gęstość objętościowa mieszanki-mineralnej, g/cm³</td>
<td>2,852</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Gęstość mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,639</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Gęstość objętościowa mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,549</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Zawartość wolnych przestrzeni, %v/v</td>
<td>3,4</td>
<td>V_{min}2,0 V_{max}4,0</td>
</tr>
<tr>
<td>5</td>
<td>Wypełnienie asfaltem wolnej przestrzeni, % v/v</td>
<td>76,7</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Odporność na deformacje trwale (metoda B w powietrzu, 60°C, 10000 cykli)</td>
<td>0,1</td>
<td>WTS_{Air} 0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,6</td>
<td>PRD_{Air} 3,0</td>
</tr>
<tr>
<td>7</td>
<td>Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C</td>
<td>85,6</td>
<td>ITSR_{80}</td>
</tr>
</tbody>
</table>
7. Metodyka badania

7.1. Koleinowanie (duży aparat)

Warunki badania:

- długość przejazdu koła 410 mm ± 5 mm,
- częstotliwość ruchu koła: 1 Hz ± 0,1 Hz,
- ciśnienie w oponie: 6 ± 0,1 bar (na początku badania),
- obciążenie ruchome 5000 ± 50 N, pomierzone statycznie na środku próbki, odchylenie osi śladu od osi teoretycznej próbki < 5 mm,
- brak kąta załomu,
- temperatura badania + 60 ± 0,2 °C,
- liczba cykli obciążających kołem wynosi 30 000.

Do badania przygotowuje się dwie próbki o wymiarach (dł. 500 mm * szer. 180 mm * wys. 100 mm). Formy z próbками umieszcza się na płycie aparatu. Próbki poddaje się 1000 cyklom wstępnego obciążenia ruchomego, w temperaturze zawartej pomiędzy 15 a 25 °C. Po wstępnej fazie dostosowania, wykonuje się pomiar zerowy \(m_0 \) (j = 1 ÷ 15) zgodnie ze schematem przedstawionym na rysunku 13. Dokonuje się ustawienia temperatury pomiaru w komorze na +60 °C mierzonej w otworze wywierconym w próbce. Próbka jest przechowywana w tych warunkach, co najmniej przez 12 h przed wykonaniem badania. Następnie próbkę obciąża się obciążeniem ruchomym od kół. Po zatrzymaniu koła odczytuje się wartość temperatury próbki. Następnie wykonuje się pomiary głębokości koleiny \(m_{ij} \), w punktach i w kolejności zaznaczonej na rysunku 13.

Dla każdej próbki wykonuje się pomiary w pięciu przekrojach, po trzy odczyty.
Głębokość kolejiny \(P_i \) pojedynczej próbki oblicza się wg równania:

\[
P_i = \frac{\sum j \left(m_{ij} - m_{ij}^0 \right)}{15 \times E} \times 100, \% (\text{mm/mm})
\]

Równanie 1

\(j \) – punkt pomiaru \(1 \ldots 15 \),
\(E \) – grubość badanej próbki, mm,
\(m_{ij} \) – odczyt głębokości koleiny w poszczególnych punktach, mm,
\(m_{ij}^0 \) – odczyty zerowe w śladzie koła w poszczególnych punktach, mm.

Wynik oblicza się jako średnią arytmetyczną badania, z co najmniej 2 próbek, o tym samym składzie. Pośrednie pomiary głębokości kolejiny służą do wykreślania krzywej oraz obliczenia parametrów funkcji potęgowej koleinowania.

7.2. Koleinowanie (mały aparat)

Mały koleinomierz wykorzystywany jest do oceny odporności mieszanki mineralno-asfaltowej na deformacje trwałe. Badanie przeprowadza się zgodnie z normą PN-EN 12697-22 [7]. Odpowiednio obciążone koło, z gumową oponą, porusza się cyklicznie po próbie z mieszanki mineralno-asfaltowej z określoną prędkością. W komorze utrzymywana jest temperatura 60°C. Próbki poddane badaniom mogą być przygotowane w zagęszczarce walcowej i mieć kształt płyty o wymiarach 260 na 320 mm oraz grubości od 30 do 120 mm, ewentualnie mogą być odwierconymi rdzeniami o średnicy 200 mm. Podczas typowego badania koło dociskane jest do próbki z siłą 700 ±
10 N, temperatura badania wynosi 60°C ± 1,0°C, a przyrost koleiny jest stale monitorowany, za pomocą elektromagnetycznego czujnika w 35 punktach z dokładnością do 0,01 mm. Poniżej przedstawiono aparat do koleinowania użyty w poniższych badaniach.

Rysunek 14 Mały koleinomierz w IBDiM

7.3. Odporność na zmęczenie

Badania zmęczeniowe przeprowadzono metodą belki 4-punktowo zginanej (4PB) wg normy PN-EN 12697-24. Badanie prowadzone jest pod obciążeniem cyklicznym na próbkach belkowych prostopadłościennych umocowanych w specjalnym aparacie za pomocą czterech uchwytów. Belki poddawane są cyklicznemu zginaniu pod obciążeniem sinusoidalnym w warunkach swobodnego obrotu i przesunięcia w miejscach podparcia i obciążenia belki (rys. 15). Obciążenie jest przykładane do dwóch środkowych uchwytów w kierunku prostopadłym do podstawy belki. Podczas badania rejestrowana jest siła obciążająca, ugięcie belki oraz kąt przesunięcia fazowego w funkcji liczby cykli obciążenia.
Badania prowadzi się na próbkach belkowych wyciętych z większych płyt zagęszczonych w laboratorium o wymiarach: 380 ± 3 mm (długość), 50 ± 3 mm (wysokość), 63 ± 3 mm (szerokość). Wszystkie powierzchnie są ścięte, gładkie i wzajemnie prostopadle. Wycięte próbki są suszone do uzyskania stałej masy (nie więcej niż 0,25% na 24h), a następnie wymiarowane. Przed rozpoczęciem badania próbki są przez minimum dwie godziny termostatowane w aparacie zmęczeniowym umieszczonym w komorze termicznej (rys.16).

Badania zmęczenia przeprowadzono w następujących warunkach:

* częstotliwość 10 Hz,
• obciążenie sinusoidalne,
• tryb kontrolowanych odkształceń,
• temperatura badania - temperatura równoważna ze względu na zmęczenie nawierzchni, która w Polsce wynosi 10°C [8].

W trakcie badania zmęczenia rejestrowana jest siła obciążająca, ugięcie belki oraz kąt przesunięcia fazowego w funkcji liczby cykli obciążenia. System komputerowy na bieżąco wyświetla rejestrowane wielkości oraz sztywność zastępcza próbki. Zgodnie z założeniami normy badanie powinno być prowadzone do momentu konwencjonalnego zniszczenia próbki, czyli do chwili, kiedy moduł sztywności próbk zmniejszy się o połowę. Dla potrzeb pracy badanie było w większości przypadków kontynuowane do momentu, aż moduł sztywności zmniejszy się o około 60%. Następnie wyznaczono trwałość zmęczeniową według kryterium konwencjonalnego i kryterium energetycznego.

W badaniach laboratoryjnych trwałość zmęczeniowa próbki określana jest jako liczba cykli obciążenia do spełnienia kryterium zmęczeniowego wyznaczającego moment zniszczenia próbki.

7.4. Moduł sztywności

Badanie modułu sztywności przeprowadzono zgodnie z normą PN-EN 12697-26. Polega ona na zginaniu próbki belkowej umieszczonym w aparacie zmęczeniowym przy stałej amplitudzie odkształcenia. Podczas badania rejestrowana jest siła, ugięcie belki, kąt przesunięcia fazowego, liczba cykli, obliczany jest moduł sztywności oraz naprężenia i odkształcenia rozciągające.

Warunki badania zespolonego modułu sztywności przyjęto następujące:
- temperatura: 0, 10, 20, 30°C,
- częstotliwość: 1, 2, 5, 8, 10 Hz,
- odkształcenie: 50 μm/mm.

Badania modułu sztywności metodą 4PB będą kontynuowane w pozostałych temperaturach w ramach kontynuacji zadania 5 w etapie II wg zatwierdzonego programu pracy.

Wynikiem badania jest moduł sztywności i kąt przesunięcia fazowego. Zespolony moduł sztywności \(E^* \) jest liczbą zespoloną, którą można opisać równaniem:
\[
E^* = E' + iE''
\]
Równanie 2

w którym:
\[
E' = |E^*| \cos \varphi
\]
Równanie 3
\[
E'' = |E^*| \sin \varphi
\]
Równanie 4

\(E' \) – część rzeczywista (sprężysta),
\(E'' \) – część urojona (lepka).

Obie składowe modułu zespolonego związane są wartością kąta przesunięcia fazowego wg równania:
\[
tg \varphi = \frac{E''}{E'}
\]
Równanie 5

w którym:
φ - kąt przesunięcia fazowego, °.

Moduł sztywności jest wartością bezwzględną zespolonego modułu sztywności. Kąt przesunięcia fazowego stanowi informację o przewadze właściwości lepkich lub sprężystych w materiale: niższa jego wartość tym materiał bardziej sprężysty. Wartość kąta przesunięcia fazowego może wynosić od 0 (stal) do 90° (ciecz).

Kąt przesunięcia fazowego wynika z faktu, iż w ciałach lepkosprężystych odkształcenie pojawia się z pewnym opóźnieniem w stosunku do obciążenia (rys. 17). Jako kryterium oceny lepkosprężystych właściwości mieszane mineralno-asfaltowych przyjmuje się wartość tangensa kąta przesunięcia fazowego [13]:

- w materiałach lepkich φ = 90°, tg φ = ∞,
- w materiałach sprężystych φ = 0°, tg φ = 0,
- w materiałach lepkosprężystych 0° < φ < 90°, 0° < tg φ < ∞.

Rysunek 17 Ilustracja kąta przesunięcia fazowego

Materiały bitumiczne są materiałami, których właściwości reologiczne zależą od czasu obciążenia (badanie statyczne) lub częstotliwości obciążenia (badanie dynamiczne) oraz temperatury [14,15]. Czas (częstotliwość) obciążenia i temperatura są wielkościami wymiennymi. Oznacza to, modułowi sztywności w wysokiej temperaturze i krótkim czasie obciążenia odpowiada równoważny pod względem wartości moduł w niższej temperaturze i dłuższym czasie obciążenia. Moduł sztywności (lub kąt przesunięcia fazowego) wyznaczony w danej temperaturze i czasie obciążenia może być więc transponowany do innej temperatury:

\[E(T, t) = \frac{E(T_0, t/a_T)}{a_T}, \]

Równanie 6

w którym:

\(E(T, t) \) – moduł sztywności w temperaturze \(T \) i czasie obciążenia \(t \),

\(E(T_0, t/a_T) \) – moduł sztywności w temperaturze \(T_0 \) i zredukowanym czasie obciążenia \(t/a_T \),

\(a_T \) – współczynnik przesunięcia temperaturowego.

Dysponując wynikami badań modułu w różnych warunkach i stosując zasadę superpozycji można wyniki sprowadzić do jednej krzywej nazywanej krzywą wiodącą (ang. master curve) (rysunek 18). Znane są różne metody graficzne i analityczne umożliwiające przeprowadzenie takiej transpozycji [16,17].

![Rysunek 18 Przykład opracowania krzywej wiodącej](image)

7.5. Wodoodporność

Określanie wrażliwości próbek asfaltowych na wodę wykonano zgodnie z normą PN-EN 12697-12. Do badania każdej mieszanki przygotowano 6 próbek walcowych i podzielono je na dwie grupy. Próbki z „zestawu suchego” doprowadzono do temperatury badania umieszczając je w komorze powietrznej, natomiast próbki z „zestawu mokrego” umieszczono w szczelnej, miękkiej plastikowej torebce wypełnioną wodą lub w wodoszczelnym naczyniu wypełnionym wodą i wstawiono do komory powietrznej. Przed badaniem osuszono mokre próbki i postępowano zgodnie z normą PN-EN 12697-23 czyli określono wytrzymałość próbek na rozciąganie pośrednie.

Wskaźnik wytrzymałości na rozciąganie pośrednie ITSR obliczono według poniższego wzoru:
\[
ITSR = 100 \times \frac{ITS_w}{ITS_d}
\]

Równanie 7

w którym:

\(ITSR\) wskaźnik wytrzymałości próbk na rozciąganie pośrednie, w procentach (%),
\(ITS_w\) średnia wytrzymałość wyznaczona dla grupy próbek mokrych, w (kPa),
\(ITS_d\) średnia wytrzymałość wyznaczona dla grupy próbek suchych, w (kPa).

7.6. Odporność na pękanie niskotemperaturowe

Badania odporności na pękanie niskotemperaturowe przeprowadzono metodą TSRST, którego koncepcja została opracowana przez Monismitha i in. [18], później zastosowana przez Fabba [19] i udoskonalona przez Aranda [20], który przeprowadził obszernie badania wpływ składu mieszanki mineralno-asfaltowej na jej odporność niskotemperaturowa [21]. We współpracy z Arandem dokonano też po raz pierwszy oceny właściwości niskotemperaturowych asfaltów drogowych stosowany w Polsce [22]. Metodyka ta została zaakceptowana w programie badawczym SHARP w USA.

Badania przeprowadzane są zgodnie z normą AASHTO TP10-93 [23] na stanowisku pomiarowym MTS. Próbki do badań mają kształt prostopadłościenny o wymiarach 50 x 50 x 250 mm. Do górnej i dolnej podstawy próbki przykleja się stalowe krążki, które umożliwiają zamocowanie w ramie wytrzymałościowej (rys. 19). Do bocznych krawędzi próbki przykleja się ekstensometry do pomiaru odkształceń wzdłużnych. Całość zamykana jest w komorze termicznej. Temperatura początkowa badania wynosi 5°C, a następnie jest obniżana z prędkością 10°C/h. Zadaniem ramy wytrzymałościowej jest niedopuszczenie do odkształceń (skurczu) próbki. W takich warunkach w próbcе indukowane są termiczne naprężenia rozciągające. Podczas badania rejestrowana jest temperatura, siła rozciągająca oraz odkształcenie. Koniec badania następuje w momencie pęknięcia próbki. Wynikiem badania jest naprężenie przy zniszczeniu oraz temperatura pęknięcia.
Spękania niskotemperaturowe należą do spękań indukowanych termicznie. Obniżenie temperatury do wartości ujemnych powoduje zesztywnienie warstwy, przejście ze stanu lepkoplastycznego w stan kruchy, sprężysty. Pojawiają się wówczas naprężenia rozciągające, których czas relaksacji w warunkach niskich temperatur jest wyraźnie wydłużony. Obniżenie temperatury oraz brak możliwości swobodnych odkształceń powoduje wzrost tych naprężeń. Wytrzymałość mieszanki mineralno-ASFALTowej na rozciąganie początkowo rośnie, ale potem zaczyna spadać. W momencie przekroczenia wytrzymałości na rozciąganie przez naprężenia rozciągające dochodzi do powstania spękań poprzecznych warstw nawierzchni (rys. 20).

Z powyższych zależności wynika, że mieszanka mineralno-ASFALTOWA jest tym bardziej odporna na spękania niskotemperaturowe, im w niższej temperaturze osiąga wytrzymałość na rozciąganie. Pojawienie się pęknięcia na powierzchni nawierzchni przyczynia się do powstania tzw. zjawiska karbu i koncentracji naprężeń oraz następuje propagacja pęknięcia.
Rysunek 20 - Schemat przebiegu pękania niskotemperaturowego nawierzchnia asfaltowej: czerwona linia – naprężenie rozciągające termiczne, czarna linia – wytrzymałość na rozciąganie mieszanki mineralno-asfaltowej, σ_p – naprężenie niszczące, T_p – temperatura niszcząca

7.7. Symulacja starzenia krótko- i długoterminowego

Do badań przygotowano próbki mieszanki w stanie oryginalnym (tzn. bez starzenia, oznaczenie próbek i mieszanek „O”), po starzeniu krótkoterminowym STOA (oznaczenie „K”) oraz po starzeniu długoterminowym LTOA (oznaczenie „D”). Procedury starzenia przedstawiono poniżej.

Starzenie krótkoterminowe STOA

Mieszankę mineralno-asfaltową wytwarza się w mieszarce, w temperaturze ok. 150°C. Mieszankę w stanie luźnym (bez zagęszczenia) poddaje się procesowi starzenia krótkoterminowego STOA. Na metalowej formie rozkłada się mieszankę tak, aby grubość warstwy stanowiła około 1,5 cm. Następnie formę umieszcza się w suszarce z wymuszonym obiegiem, w temperaturze 135°C±1°C. Mieszankę poddaje się starzeniu w suszarce przez 4 godziny, cyklicznie mieszając co ok. 50 minut. Po wyjęciu z suszarki mieszankę podgrzewa się do temperatury zagęszczania i formuje próbki

Starzenie długoterminowe LTOA

Starzenie długoterminowe wykonuje się na próbkach zagęszczonych i poddanych wcześniej starzeniu krótkoterminowemu STOA. Starzenie
długoterminowe polega na umieszczaniu zagęszczonych próbek Marshalla w suszarce z wymuszonym obiegiem, w temperaturze 85°C±1°C i wygrzewaniu przez okres 120 godzin.

8. Wyniki badań

8.1. Koleinowanie (Zadanie 5.1)
W tablicach 8 - 9 oraz na rysunkach 21 - 22 przedstawiono wyniki badania koleinowania w dużym aparacie mieszanki z włóknem oraz mieszanki porównawczej w stanie bez starzenia.

Tablica 8 Wyniki badań zmęczenia koleinowania mieszanki porównawczej w dużym aparacie (P O)

<table>
<thead>
<tr>
<th>Liczba cykli</th>
<th>1 000</th>
<th>3 000</th>
<th>10 000</th>
<th>20 000</th>
<th>30 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Próbka 1, Pi</td>
<td>4,5 %</td>
<td>5,6 %</td>
<td>7,8 %</td>
<td>9,0 %</td>
<td>9,4 %</td>
</tr>
<tr>
<td>Próbka 2, Pi</td>
<td>4,2 %</td>
<td>5,5 %</td>
<td>8,5 %</td>
<td>9,8 %</td>
<td>9,8 %</td>
</tr>
<tr>
<td>Średnia, P</td>
<td>4,3 %</td>
<td>5,5 %</td>
<td>8,2 %</td>
<td>9,4 %</td>
<td>9,6 %</td>
</tr>
</tbody>
</table>

Rysunek 21 Przebieg badania koleinowania w dużym aparacie mieszanki porównawczej (P O)
Tablica 9 Wyniki badań zmęczenia koleinowania mieszanki z włóknem w dużym aparacie (W O)

<table>
<thead>
<tr>
<th>Liczba cykli</th>
<th>1 000</th>
<th>3 000</th>
<th>10 000</th>
<th>20 000</th>
<th>30 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Próbka 1, Pi</td>
<td>3,4 %</td>
<td>4,1 %</td>
<td>4,1 %</td>
<td>4,5 %</td>
<td>4,7 %</td>
</tr>
<tr>
<td>Próbka 2, Pi</td>
<td>3,4 %</td>
<td>3,5 %</td>
<td>4,7 %</td>
<td>5,4 %</td>
<td>6,1 %</td>
</tr>
<tr>
<td>Średnia, P</td>
<td>3,4 %</td>
<td>3,8 %</td>
<td>4,4 %</td>
<td>4,9 %</td>
<td>5,4 %</td>
</tr>
</tbody>
</table>

Rysunek 22 Przebieg badania koleinowania w dużym aparacie mieszanki z włóknem (W O)

Dla celów porównawczych i poznawczych przeprowadzono również dodatkowo w stosunku do założeń programu pracy badanie koleinowania w małym aparacie wg normy PN-EN 12697-22 w warunkach badania określonych w PN-EN 13108-20. Wyniki przedstawiono w tablicy 10 i na rysunku 23. Nachylenie wykresu koleinowania WTS_AIR wyniosło 0,07 w przypadku mieszanki z włóknem i 0,14 w przypadku mieszanki porównawczej.

Tablica 10 Wyniki badań zmęczenia koleinowania mieszanki porównawczej oraz mieszanki z włóknem w małym aparacie (głębokość koleiny, %)

<table>
<thead>
<tr>
<th>Liczba cykli</th>
<th>100</th>
<th>300</th>
<th>1000</th>
<th>3000</th>
<th>10000 (PRD_AIR)</th>
<th>20000</th>
<th>30000</th>
<th>40000</th>
<th>50000</th>
</tr>
</thead>
<tbody>
<tr>
<td>P O</td>
<td>1,4 %</td>
<td>1,9 %</td>
<td>3,1 %</td>
<td>4,3 %</td>
<td>5,9 %</td>
<td>7,0 %</td>
<td>7,9 %</td>
<td>8,5 %</td>
<td>9,1 %</td>
</tr>
<tr>
<td>W O</td>
<td>1,3 %</td>
<td>1,9 %</td>
<td>3,0 %</td>
<td>4,1 %</td>
<td>5,0 %</td>
<td>5,5 %</td>
<td>5,8 %</td>
<td>6,0 %</td>
<td>6,1 %</td>
</tr>
</tbody>
</table>
Rysunek 23 Przebieg badania koleinowania w małym aparacie mieszanki z włóknem oraz mieszanki porównawczej
8.2. Odporność na zmęczenie (Zadanie 5.2)

W ramach realizacji etapu I przeprowadzono badania zmęczeniowe metodą belki czteropunktowo zginanej w temperaturze 10°C na mieszance porównawczej i mieszance z włóknem. Wyniki badań przedstawiono w tablicach 11 - 16 i na rysunkach 24 - 29.

Tablica 11 Wyniki badań zmęczenia mieszanki porównawczej bez starzenia (P O)

<table>
<thead>
<tr>
<th>Próbka</th>
<th>B, mm</th>
<th>H, mm</th>
<th>E₀, MPa</th>
<th>ε, μm/m</th>
<th>N</th>
<th>N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P O 1</td>
<td>63,2</td>
<td>50,2</td>
<td>16 736</td>
<td>127,7</td>
<td>4 636 778</td>
<td>4 215 181</td>
</tr>
<tr>
<td>P O 2</td>
<td>62,2</td>
<td>50,1</td>
<td>14 674</td>
<td>127,4</td>
<td>> 6 000 000</td>
<td>> 6 000 000</td>
</tr>
<tr>
<td>P O 3</td>
<td>63,4</td>
<td>50,1</td>
<td>16 171</td>
<td>187,6</td>
<td>366 297</td>
<td>334 197</td>
</tr>
<tr>
<td>P O 5</td>
<td>63,7</td>
<td>50,2</td>
<td>15 631</td>
<td>187,4</td>
<td>438 200</td>
<td>398 000</td>
</tr>
<tr>
<td>P O 6</td>
<td>63,6</td>
<td>50,3</td>
<td>15 129</td>
<td>187,8</td>
<td>369 401</td>
<td>345 221</td>
</tr>
<tr>
<td>P O 7</td>
<td>63,6</td>
<td>50,2</td>
<td>14 670</td>
<td>187,2</td>
<td>437 401</td>
<td>394 001</td>
</tr>
<tr>
<td>P O 8</td>
<td>63,6</td>
<td>50,2</td>
<td>15 092</td>
<td>187,7</td>
<td>319 801</td>
<td>294 881</td>
</tr>
</tbody>
</table>

średnia 127,5 > 5 000 000 > 5 000 000
średnia 187,5 386 220 353 540

Tablica 12 Wyniki badań zmęczenia mieszanki z włóknem bez starzenia (W O)

<table>
<thead>
<tr>
<th>Próbka</th>
<th>B, mm</th>
<th>H, mm</th>
<th>E₀, MPa</th>
<th>ε, μm/m</th>
<th>N</th>
<th>N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W O 1</td>
<td>63,4</td>
<td>50,5</td>
<td>14 512</td>
<td>188,1</td>
<td>359 598</td>
<td>326 938</td>
</tr>
<tr>
<td>W O 3</td>
<td>63,6</td>
<td>50,4</td>
<td>15 036</td>
<td>128,7</td>
<td>10 419 134</td>
<td>9 505 542</td>
</tr>
<tr>
<td>W O 4</td>
<td>63,6</td>
<td>50,4</td>
<td>13 373</td>
<td>189,5</td>
<td>419 499</td>
<td>369 899</td>
</tr>
<tr>
<td>W O 5</td>
<td>63,5</td>
<td>50,1</td>
<td>15 151</td>
<td>188,7</td>
<td>575 396</td>
<td>532 697</td>
</tr>
<tr>
<td>W O 7</td>
<td>63,6</td>
<td>50,2</td>
<td>13 647</td>
<td>188,5</td>
<td>849 599</td>
<td>774 300</td>
</tr>
</tbody>
</table>

średnia 128,7 10 419 134 9 505 542
średnia 188,7 551 023 500 959

Tablica 13 Wyniki badań zmęczenia mieszanki porównawczej po starzeniu krótkoterminowym (P K)

<table>
<thead>
<tr>
<th>Próbka</th>
<th>B, mm</th>
<th>H, mm</th>
<th>E₀, MPa</th>
<th>ε, μm/m</th>
<th>N</th>
<th>N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P K 1</td>
<td>63,3</td>
<td>48,5</td>
<td>18 590</td>
<td>187,4</td>
<td>189 199</td>
<td>172 399</td>
</tr>
<tr>
<td>P K 2</td>
<td>63,6</td>
<td>50,4</td>
<td>17 617</td>
<td>188,5</td>
<td>216 099</td>
<td>192 399</td>
</tr>
<tr>
<td>P K 3</td>
<td>63,5</td>
<td>50,3</td>
<td>18 671</td>
<td>187,6</td>
<td>183 399</td>
<td>160 999</td>
</tr>
<tr>
<td>P K 4</td>
<td>63,3</td>
<td>50,4</td>
<td>18 022</td>
<td>187,6</td>
<td>142 199</td>
<td>126 899</td>
</tr>
</tbody>
</table>

średnia 187,8 182 724 163 174

Tablica 14 Wyniki badań zmęczenia mieszanki z włóknem po starzeniu krótkoterminowym (W K)

<table>
<thead>
<tr>
<th>Próbka</th>
<th>B, mm</th>
<th>H, mm</th>
<th>E₀, MPa</th>
<th>ε, μm/m</th>
<th>N</th>
<th>N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W K 1</td>
<td>63,3</td>
<td>50,1</td>
<td>16 829</td>
<td>189,6</td>
<td>723 496</td>
<td>654 596</td>
</tr>
<tr>
<td>W K 2</td>
<td>63,4</td>
<td>50,1</td>
<td>17 024</td>
<td>189,3</td>
<td>453 297</td>
<td>407 097</td>
</tr>
<tr>
<td>W K 3</td>
<td>63,3</td>
<td>50,1</td>
<td>17 068</td>
<td>188,6</td>
<td>366 497</td>
<td>315 697</td>
</tr>
<tr>
<td>W K 4</td>
<td>63,4</td>
<td>50,3</td>
<td>17 362</td>
<td>187,4</td>
<td>280 798</td>
<td>249 898</td>
</tr>
</tbody>
</table>

średnia 188,7 456 022 406 822
Tablica 15 Wyniki badań zmęczenia mieszanki porównawczej po starzeniu długoterminowym (P D)

<table>
<thead>
<tr>
<th>Próbka</th>
<th>B, mm</th>
<th>H, mm</th>
<th>E₀, MPa</th>
<th>ε, μm/m</th>
<th>N</th>
<th>N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P D 1</td>
<td>63,7</td>
<td>63,6</td>
<td>18 466</td>
<td>187,3</td>
<td>205 399</td>
<td>175 799</td>
</tr>
<tr>
<td>P D 2</td>
<td>63,5</td>
<td>63,6</td>
<td>18 144</td>
<td>186,4</td>
<td>257 599</td>
<td>227 899</td>
</tr>
<tr>
<td>P D 3</td>
<td>63,5</td>
<td>63,5</td>
<td>19 392</td>
<td>184,8</td>
<td>242 699</td>
<td>222 799</td>
</tr>
<tr>
<td>P D 4</td>
<td>63,6</td>
<td>63,5</td>
<td>18 193</td>
<td>186,0</td>
<td>402 298</td>
<td>360 298</td>
</tr>
<tr>
<td>P D 6</td>
<td>63,2</td>
<td>63,1</td>
<td>16 757</td>
<td>186,7</td>
<td>378 582</td>
<td>342 981</td>
</tr>
<tr>
<td>P D 8</td>
<td>63,0</td>
<td>63,1</td>
<td>12 229</td>
<td>185,0</td>
<td>426 896</td>
<td>373 797</td>
</tr>
<tr>
<td>średnia</td>
<td></td>
<td></td>
<td></td>
<td>186,0</td>
<td>318 912</td>
<td>283 929</td>
</tr>
</tbody>
</table>

Tablica 16 Wyniki badań zmęczenia mieszanki z włóknem po starzeniu długoterminowym (W D)

<table>
<thead>
<tr>
<th>Próbka</th>
<th>B, mm</th>
<th>H, mm</th>
<th>E₀, MPa</th>
<th>ε, μm/m</th>
<th>N</th>
<th>N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W D 1</td>
<td>63,4</td>
<td>50,2</td>
<td>19 338</td>
<td>186,6</td>
<td>341 899</td>
<td>297 899</td>
</tr>
<tr>
<td>W D 2</td>
<td>63,5</td>
<td>50,3</td>
<td>19 537</td>
<td>186,3</td>
<td>227 499</td>
<td>192 999</td>
</tr>
<tr>
<td>W D 3</td>
<td>63,3</td>
<td>50,4</td>
<td>19 513</td>
<td>186,1</td>
<td>306 798</td>
<td>272 798</td>
</tr>
<tr>
<td>W D 4</td>
<td>63,4</td>
<td>50,5</td>
<td>18 964</td>
<td>184,6</td>
<td>238 798</td>
<td>211 298</td>
</tr>
<tr>
<td>W D 5</td>
<td>63,0</td>
<td>50,3</td>
<td>18 639</td>
<td>185,2</td>
<td>199 599</td>
<td>172 099</td>
</tr>
<tr>
<td>W D 6</td>
<td>63,2</td>
<td>50,1</td>
<td>18 784</td>
<td>186,7</td>
<td>212 899</td>
<td>189 499</td>
</tr>
<tr>
<td>W D 7</td>
<td>63,2</td>
<td>50,2</td>
<td>18 359</td>
<td>185,3</td>
<td>368 797</td>
<td>317 297</td>
</tr>
<tr>
<td>średnia</td>
<td></td>
<td></td>
<td></td>
<td>185,8</td>
<td>270 898</td>
<td>236 270</td>
</tr>
</tbody>
</table>

Oznaczenia w tablicach:

Rysunek 24 Przebieg badania zmęczenia mieszanki porównawczej bez starzenia (P O)
Rysunek 25 Przebieg badania zmęczenia mieszanki z włóknem bez starzenia (W O)

Rysunek 26 Przebieg badania zmęczenia mieszanki porównawczej po starzeniu krótkoterminowym (P K)
Rysunek 27 Przebieg badania zmęczenia mieszanki z włóknem po starzeniu krótkoterminowym (W K)

Rysunek 28 Przebieg badania zmęczenia mieszanki porównawczej po starzeniu długoterminowym (P D)
Rysunek 29 Przebieg badania zmęczenia mieszanki z włóknem po starzeniu długoterminowym (W D)
8.3. Moduł sztywności (Zadanie 5.3)

W ramach realizacji etapu I przeprowadzono badania modułu sztywności metodą belki czterepunktowo zginanej w temperaturze 10°C na mieszance porównawczej i mieszance z włóknem. Wyniki badań przedstawiono w tablicach 17 - 22.

Tablica 17 Wyniki badań modułu sztywności i kata przesunięcia fazowego mieszanek porównawczej w stanie oryginalnym PO

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Moduł sztywności, MPa</th>
<th>Kąt przesunięcia fazowego, °</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Hz</td>
<td>8Hz</td>
</tr>
<tr>
<td>P O 1</td>
<td>16606</td>
<td>15954</td>
</tr>
<tr>
<td>P O 2</td>
<td>15091</td>
<td>14618</td>
</tr>
<tr>
<td>P O 3</td>
<td>17258</td>
<td>16704</td>
</tr>
<tr>
<td>P O 4</td>
<td>16501</td>
<td>15848</td>
</tr>
<tr>
<td>P O 5</td>
<td>16162</td>
<td>15593</td>
</tr>
<tr>
<td>P O 6</td>
<td>16052</td>
<td>15537</td>
</tr>
<tr>
<td>P O 7</td>
<td>14415</td>
<td>13882</td>
</tr>
<tr>
<td>P O 8</td>
<td>15793</td>
<td>14922</td>
</tr>
<tr>
<td>średnia</td>
<td>15985</td>
<td>15382</td>
</tr>
<tr>
<td>odch. st.</td>
<td>895</td>
<td>879</td>
</tr>
</tbody>
</table>

Tablica 18 Wyniki badań modułu sztywności i kata przesunięcia fazowego mieszanek z włóknem w stanie oryginalnym WO

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Moduł sztywności, MPa</th>
<th>Kąt przesunięcia fazowego, °</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Hz</td>
<td>8Hz</td>
</tr>
<tr>
<td>W O 1</td>
<td>15218</td>
<td>14688</td>
</tr>
<tr>
<td>W O 2</td>
<td>16814</td>
<td>16153</td>
</tr>
<tr>
<td>W O 3</td>
<td>15470</td>
<td>14884</td>
</tr>
<tr>
<td>W O 4</td>
<td>14087</td>
<td>13596</td>
</tr>
<tr>
<td>W O 5</td>
<td>15350</td>
<td>14804</td>
</tr>
<tr>
<td>W O 6</td>
<td>17462</td>
<td>16694</td>
</tr>
<tr>
<td>W O 7</td>
<td>17235</td>
<td>16615</td>
</tr>
<tr>
<td>W O 8</td>
<td>14195</td>
<td>13678</td>
</tr>
<tr>
<td>średnia</td>
<td>15729</td>
<td>15139</td>
</tr>
<tr>
<td>odch. st.</td>
<td>1308</td>
<td>1226</td>
</tr>
</tbody>
</table>

Tablica 19 Wyniki badań modułu sztywności i kata przesunięcia fazowego mieszanek porównawczej po starzeniu krótkoterminowym PK

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Moduł sztywności, MPa</th>
<th>Kąt przesunięcia fazowego, °</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Hz</td>
<td>8Hz</td>
</tr>
<tr>
<td>P K 1</td>
<td>17642</td>
<td>17220</td>
</tr>
<tr>
<td>P K 2</td>
<td>18014</td>
<td>17641</td>
</tr>
<tr>
<td>P K 3</td>
<td>18251</td>
<td>17825</td>
</tr>
<tr>
<td>P K 4</td>
<td>18501</td>
<td>18014</td>
</tr>
<tr>
<td>średnia</td>
<td>18102</td>
<td>17675</td>
</tr>
<tr>
<td>odch. st.</td>
<td>366</td>
<td>340</td>
</tr>
</tbody>
</table>
Tablica 20 Wyniki badań modułu sztywności i kąta przesunięcia fazowego mieszanki z włóknem po starzeniu krótkoterminowym WK

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Moduł sztywności, MPa</th>
<th>Kąt przesunięcia fazowego, °</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Hz</td>
<td>8Hz</td>
</tr>
<tr>
<td>W K 1</td>
<td>19662</td>
<td>19060</td>
</tr>
<tr>
<td>W K 2</td>
<td>17772</td>
<td>17359</td>
</tr>
<tr>
<td>W K 3</td>
<td>19439</td>
<td>19096</td>
</tr>
<tr>
<td>W K 4</td>
<td>18266</td>
<td>17703</td>
</tr>
<tr>
<td>średnia</td>
<td>18785</td>
<td>18305</td>
</tr>
<tr>
<td>odch. st.</td>
<td>911</td>
<td>904</td>
</tr>
</tbody>
</table>

Tablica 21 Wyniki badań modułu sztywności i kąta przesunięcia fazowego mieszanki porównawczej po starzeniu długoterminowym PD

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Moduł sztywności, MPa</th>
<th>Kąt przesunięcia fazowego, °</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Hz</td>
<td>8Hz</td>
</tr>
<tr>
<td>P D 1</td>
<td>17223</td>
<td>16465</td>
</tr>
<tr>
<td>P D 2</td>
<td>19991</td>
<td>19472</td>
</tr>
<tr>
<td>P D 3</td>
<td>19439</td>
<td>18947</td>
</tr>
<tr>
<td>P D 4</td>
<td>19233</td>
<td>18719</td>
</tr>
<tr>
<td>P D 5</td>
<td>17878</td>
<td>17325</td>
</tr>
<tr>
<td>P D 6</td>
<td>18870</td>
<td>18138</td>
</tr>
<tr>
<td>P D 7</td>
<td>18579</td>
<td>17966</td>
</tr>
<tr>
<td>średnia</td>
<td>18745</td>
<td>18147</td>
</tr>
<tr>
<td>odch. st.</td>
<td>947</td>
<td>1022</td>
</tr>
</tbody>
</table>

Tablica 22 Wyniki badań modułu sztywności i kąta przesunięcia fazowego mieszanki z włóknem po starzeniu długoterminowym WD

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Moduł sztywności, MPa</th>
<th>Kąt przesunięcia fazowego, °</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Hz</td>
<td>8Hz</td>
</tr>
<tr>
<td>W D 1</td>
<td>19719</td>
<td>19347</td>
</tr>
<tr>
<td>W D 2</td>
<td>19760</td>
<td>19240</td>
</tr>
<tr>
<td>W D 3</td>
<td>19669</td>
<td>19080</td>
</tr>
<tr>
<td>W D 4</td>
<td>19848</td>
<td>19239</td>
</tr>
<tr>
<td>W D 5</td>
<td>19671</td>
<td>19124</td>
</tr>
<tr>
<td>W D 6</td>
<td>20140</td>
<td>19528</td>
</tr>
<tr>
<td>W D 7</td>
<td>19282</td>
<td>18870</td>
</tr>
<tr>
<td>średnia</td>
<td>19664</td>
<td>19204</td>
</tr>
<tr>
<td>odch. st.</td>
<td>274</td>
<td>209</td>
</tr>
</tbody>
</table>

str. 49
8.4. Wodoodporność (Zadanie 5.4)
Badania wodoodporności przeprowadzono na mieszance porównawczej i mieszance z włóknem w stanie bez starzenia oraz po starzeniu krótko- i długoterminowym. Wyniki badań przedstawiono w tablicy 23.

Tablica 23 Zestawienie wyników badań wodoodporności

<table>
<thead>
<tr>
<th>Mieszanka</th>
<th>ITS$_w$</th>
<th>ITS$_d$</th>
<th>ITSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>P O</td>
<td>1219,6</td>
<td>1294,5</td>
<td>94,2</td>
</tr>
<tr>
<td>W O</td>
<td>1315,0</td>
<td>1296,4</td>
<td>101,4</td>
</tr>
<tr>
<td>P K</td>
<td>1407,8</td>
<td>1511,0</td>
<td>93,2</td>
</tr>
<tr>
<td>W K</td>
<td>1444,1</td>
<td>1653,6</td>
<td>87,3</td>
</tr>
<tr>
<td>P D</td>
<td>1298,0</td>
<td>1524,4</td>
<td>85,2</td>
</tr>
<tr>
<td>W D</td>
<td>1393,0</td>
<td>1460,4</td>
<td>95,4</td>
</tr>
</tbody>
</table>

8.5. Odporność na pękanie niskotemperaturowe (Zadanie 5.5)

W ramach realizacji Etapu I przeprowadzono badania odporności na pękanie niskotemperaturowe metodą TSRST na mieszance porównawczej i mieszance z włóknem. Wyniki badań przedstawiono w tablicach 24 - 26 i na rysunkach 30 - 35.

Tablica 24 Wyniki badań TSRST mieszanki porównawczej i mieszanki z włóknem w stanie oryginalnym

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Temperatura pęknięcia, °C</th>
<th>Naprężenie przy pęknięciu, MPa</th>
<th>Próbka</th>
<th>Temperatura pęknięcia, °C</th>
<th>Naprężenie przy pęknięciu, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>P O 1</td>
<td>-22,5</td>
<td>4,5</td>
<td>W O 1</td>
<td>-17,6</td>
<td>3,7</td>
</tr>
<tr>
<td>P O 2</td>
<td>-22,7</td>
<td>4,9</td>
<td>W O 2</td>
<td>-22,7</td>
<td>4,6</td>
</tr>
<tr>
<td>P O 3</td>
<td>-21,2</td>
<td>5,1</td>
<td>W O 3</td>
<td>-19,4</td>
<td>4,1</td>
</tr>
<tr>
<td>średnia</td>
<td>-22,1</td>
<td>4,8</td>
<td>średnia</td>
<td>-19,9</td>
<td>4,2</td>
</tr>
</tbody>
</table>

Tablica 25 Wyniki badań TSRST mieszanki porównawczej i mieszanki z włóknem po starzeniu krótkoterminowym

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Temperatura pęknięcia, °C</th>
<th>Naprężenie przy pęknięciu, MPa</th>
<th>Próbka</th>
<th>Temperatura pęknięcia, °C</th>
<th>Naprężenie przy pęknięciu, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>P K 1</td>
<td>-19,8</td>
<td>4,9</td>
<td>W K 1</td>
<td>-18,1</td>
<td>4,2</td>
</tr>
<tr>
<td>P K 2</td>
<td>-20,0</td>
<td>5,0</td>
<td>W K 2</td>
<td>-20,0</td>
<td>4,7</td>
</tr>
<tr>
<td>P K 3</td>
<td>-18,9</td>
<td>5,1</td>
<td>W K 3</td>
<td>-19,9</td>
<td>5,0</td>
</tr>
<tr>
<td>P K 4</td>
<td>-18,3</td>
<td>4,3</td>
<td>W K 4</td>
<td>-18,5</td>
<td>4,4</td>
</tr>
<tr>
<td>średnia</td>
<td>-19,3</td>
<td>4,8</td>
<td>średnia</td>
<td>-19,1</td>
<td>4,6</td>
</tr>
</tbody>
</table>
Tablica 26 Wyniki badań TSRST mieszanki porównawczej i mieszanki z włóknem po starzeniu długoterminowym

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Temperatura pęknięcia, ºC</th>
<th>Naprężenie przy pęknięciu, MPa</th>
<th>Próbka</th>
<th>Temperatura pęknięcia, ºC</th>
<th>Naprężenie przy pęknięciu, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>P D 1</td>
<td>-19.8</td>
<td>5.2</td>
<td>W D 1</td>
<td>-17.1</td>
<td>4.6</td>
</tr>
<tr>
<td>P D 2</td>
<td>-20.1</td>
<td>4.9</td>
<td>W D 2</td>
<td>-18.4</td>
<td>4.8</td>
</tr>
<tr>
<td>P D 3</td>
<td>-18.7</td>
<td>5.3</td>
<td>W D 3</td>
<td>-16.9</td>
<td>4.4</td>
</tr>
<tr>
<td>P D 4</td>
<td>-18.8</td>
<td>5.0</td>
<td>W D 4</td>
<td>-18.5</td>
<td>4.5</td>
</tr>
<tr>
<td>średnia</td>
<td>-19.4</td>
<td>5.1</td>
<td>średnia</td>
<td>-17.7</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Rysunek 30 Przebieg badania TSRST mieszanki porównawczej w stanie oryginalnym (P O)
Rysunek 31 Przebieg badania TSRST mieszanki z włóknem w stanie oryginalnym (W O)

Rysunek 32 Przebieg badania TSRST mieszanki porównawczej po starzeniu krótkoterminowym (P K)
Rysunek 33 Przebieg badania TSRST mieszanki z włóknem po starzeniu krótkoterminowym (W K)

Rysunek 34 Przebieg badania TSRST mieszanki porównawczej po starzeniu długoterminowym (P D)
Rysunek 35 Przebieg badania TSRST mieszanki z włóknem po starzeniu długoterminowym (W D)
9. Analiza wyników (zadanie 6)

9.1. BAWMS 16 20/30 wg recept TN/251/08-1 i TN/251/08-2

9.1.1. Właściwości podstawowe
Zaprojektowano dwa składki betonu asfaltowego wysokim module sztywności BAWMS 16 20/30. Mieszanki wykonane zostały z tych samych materiałów składowych (asfalt i kruszywo). Charakteryzowały się taką samą zawartością asfaltu 5,2 % m/m i takim samym uziarnieniem mieszanki mineralnej. Różnica pomiędzy mieszankami polegała na dodaniu włókna polimerowego w ilości 0,3 % m/m w stosunku do mieszanki. Dodanie włókna spowodowało zwiększenie zawartości wolnych przestrzeni z 2,5 do 3,3 % v/v. Wypełnienie wolnych przestrzeni jest 4,5 % mniejsze w przypadku mieszanki z włóknem. Wyniki badania Marshalla są na porównywalnym poziomie. Moduł sztywności pelzania mieszanki porównawczej jest większy od modułu mieszanki z włóknem. Jednak obydwie wartości są bardzo wysokie, prawie dwukrotnie wyższe niż wartość wymagana w Zeszycie 70 [24].

Tablica 27 Zbiorcze zestawienie zbadanych właściwości mieszanki porównawczej oraz mieszanek z różną zawartością włókna i lepiszcza

<table>
<thead>
<tr>
<th>Skład Właściwości</th>
<th>Rodzaj mieszanki</th>
<th>BAWMS16 porównawcza</th>
<th>BAWMS16 z dodatkiem włókna</th>
<th>Wymagania wg Zeszytu 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zawartość asfaltu Am</td>
<td>5,2</td>
<td>5,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zawartość włókna</td>
<td>-</td>
<td>0,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodzaj asfaltu</td>
<td>20/30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gęstość objętościowa mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,649</td>
<td>2,632</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gęstość strukturalna mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,582</td>
<td>2,542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolna przestrzeń w mieszance mineralno-asfaltowej, % v/v</td>
<td>2,5</td>
<td>3,3</td>
<td>od 1 do 4</td>
<td></td>
</tr>
<tr>
<td>Wypełnienie asfaltsem wolnej przestrzeni, % v/v</td>
<td>84,2</td>
<td>79,7</td>
<td>od 74 do 90</td>
<td></td>
</tr>
<tr>
<td>Stabilność wg Marshalla w 60°C, kN</td>
<td>12,3</td>
<td>11,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odkształcenie wg Marshalla w 60°C, mm</td>
<td>3,7</td>
<td>4,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moduł sztywności pelzania pod obciążeniem statycznym w 40°C, MPa</td>
<td>40,7</td>
<td>35,1</td>
<td>> 21,0</td>
<td></td>
</tr>
</tbody>
</table>
9.1.2. Odporność na koleinowanie

Badania koleinowania wykonano na próbkach nie poddanych starzeniu (w stanie oryginalnym). Na rysunku 36 przedstawiono porównanie przebiegu badania koleinowania w dużym aparacie mieszanki porównawczej i mieszanki z włóknem.

Rysunek 36 Porównanie przebiegu koleinowania w dużym aparacie mieszanki z włóknem oraz mieszanki porównawczej

Mieszanka porównawcza uzyskała bardzo słaby wynik koleinowania (względna głębokość koleiny po 30 000 cykli 9,6 %), znacznie przekraczający dopuszczalną granicę 5,0 %. Uzyskanie takiego wyniku wskazuje na konieczność zdecydowanej zmiany składu mma lub zastosowania specjalnych rozwiązań. Zastosowanie włókna polimerowego w znacznym stopniu poprawiła odporność na deformacje trwałe mieszanki BAWMS 16. Wynik koleinowania wynoszący 5,6% stanowi niemal dwukrotną poprawę w stosunku do mieszanki porównawczej i w minimalnym stopniu przekracza minimalną wartość. W tym przypadku niewielka korekta składu mma (np. zmniejszenie zawartości asfaltu) pozwoli uzyskać mieszankę spełniającą wymagania odporności na koleinowanie. Przeprowadzone dodatkowo badanie koleinowania w małym aparacie potwierdziło znacznie lepszą odporność na koleinowanie mieszanki z włóknem (rysunek 37).
Rysunek 37 Porównanie przebiegu koleinowania w małym aparacie mieszanki z włóknem oraz mieszanki porównawczej

9.1.3. Trwałość zmęczeniowa
Trwałość zmęczeniowa mieszanki porównawczej i mieszanki z włóknem została określona na podstawie badania metodą belki czteropunktowo zginanej. Badaniom poddano mieszanki w stanie oryginalnym, po starzeniu krótkoterminowym i po starzeniu długoterminowym. Na rysunku 38 przedstawiono porównanie trwałości zmęczeniowej przy odkształceniu 188 µm/m w trzech stanach. W przypadku mieszanki BAWMS 16 z włóknem trwałość zmęczeniowa zmniejsza się w kolejnych stanach starzenia. W przypadku mieszanki porównawczej niespodziewanie trwałość mieszanki po starzeniu długoterminowym jest wyższa niż po starzeniu krótkoterminowym. Analizując wyniki zmęczenia można stwierdzić, że dodatek włókna poprawia trwałość zmęczeniową mieszanki w stanie oryginalnym oraz po starzeniu krótkoterminowym. Wyniki po starzeniu długoterminowym wskazują na nieznacznie korzystniejsze wyniki mieszanki porównawczej.
Porównanie trwałości zmęczeniowej mieszanki porównawczej oraz mieszanki z włóknem przy odkształceniu 188 µm/m

9.1.4. Sztywność

Rysunek 39 Porównanie modułu sztywności mieszanki porównawczej oraz mieszanki z włóknem w różnych częstotliwościach

Rysunek 40 Porównanie kąta przesunięcia fazowego mieszanki porównawczej oraz mieszanki z włóknem w różnych częstotliwościach
Rysunek 41 Wykres Cole-Cole mieszanki porównawczej oraz z włóknem

Rysunek 42 Wykres Blacka mieszanki porównawczej oraz mieszanki z włóknem

Tablica 28 Wzrost modułu sztywności na skutek starzenia

<table>
<thead>
<tr>
<th>Mieszanka</th>
<th>Częstotliwość</th>
<th>10 Hz</th>
<th>8 Hz</th>
<th>5 Hz</th>
<th>2 Hz</th>
<th>1 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>W K</td>
<td>19%</td>
<td>21%</td>
<td>23%</td>
<td>27%</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>P K</td>
<td>13%</td>
<td>15%</td>
<td>18%</td>
<td>23%</td>
<td>28%</td>
<td></td>
</tr>
<tr>
<td>W D</td>
<td>25%</td>
<td>27%</td>
<td>29%</td>
<td>36%</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>P D</td>
<td>17%</td>
<td>18%</td>
<td>19%</td>
<td>24%</td>
<td>28%</td>
<td></td>
</tr>
</tbody>
</table>

Tablica 29 Obniżenie części lepkiej modułu zespołonego na skutek starzenia

<table>
<thead>
<tr>
<th>Mieszanka</th>
<th>Częstotliwość</th>
<th>10 Hz</th>
<th>8 Hz</th>
<th>5 Hz</th>
<th>2 Hz</th>
<th>1 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>W K</td>
<td>10%</td>
<td>18%</td>
<td>18%</td>
<td>15%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>P K</td>
<td>25%</td>
<td>23%</td>
<td>23%</td>
<td>21%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>W D</td>
<td>19%</td>
<td>18%</td>
<td>20%</td>
<td>17%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>P D</td>
<td>23%</td>
<td>21%</td>
<td>20%</td>
<td>16%</td>
<td>13%</td>
<td></td>
</tr>
</tbody>
</table>
9.1.5. Wodoodporność
Mieszanki BAWMS 16 porównawcza i z włóknem spełniły wymaganie wodoodporności jak dla betonu asfaltowego o wysokim module sztywności do warstwy podbudowy i wiążącej. Niezależnie od stanu mieszanki pod względem starzenia, w każdym przypadku dodatek włókna poprawił wodoodporność mieszanki. Najniższe wyniki wodoodporności uzyskano na mieszankach poddanych starzeniu długoterminowemu.

Rysunek 43 Wyniki badań wodoodporności

9.1.6. Odporność na niską temperaturę
Mieszanki BAWMS 16 porównawcza i z włóknem zostały poddane badaniom odporności na pękanie niskotemperaturową metodą TSRST w trzech stanach: oryginalnym – bez starzenia, po starzeniu krótko- i długoterminowym. Wyniki badania, tj. temperaturę pęknięcia i naprężenie przy pęknięciu, zestawiono w formie graficznej na rysunkach 44 i 45. Mieszanka porównawcza charakteryzowała się korzystnie niższą temperaturą pęknięcia, szczególnie w stanie oryginalnym i po starzeniu długoterminowym (różnica około 1,5 – 2,0˚C w stosunku do mieszanki z włóknem). W przypadku mieszanek po starzeniu krótkoterminowym różnica ta jest pomijalna (0,2˚C). Większe naprężenia przy pęknięciu mieszanki porównawczej w trzech stanach wynikają z niższej temperatury pęknięcia w stosunku do mieszanki z włóknem.
9.1.7. Podsumowanie wyników analizy

Na podstawie przedstawionej analizy wyników mieszanki porównawczej BAWMS 16 20/30 oraz mieszanki BAWMS 16 20/30 z dodatkiem włókna można stwierdzić pewne różnice we właściwościach podstawowych i funkcjonalnych tych mieszanek. Dodatek włókna pozwolił zwiększyć zawartość wolnych przestrzeni w mma, zwiększył jej sztywność, znacznie poprawił odporność na deformacje trwałe (koleinowanie) i wodoodporność oraz korzystnie wpłynął na trwałość zmęczeniową.
Słabsze wyniki odporności niskotemperaturowej mieszanki z włóknem mogą wynikać z większej sztywności tych mieszanek i większym udziałem fazy lepkiej modułu zespolonego w stanie oryginalnym i po starzeniu długoterminowym.

9.2. ACWMS 16 20/30 wg recept TN/09/2L i TN/09/2L/W

9.2.1. Właściwości podstawowe

Zaprojektowano dwa składki betonu asfaltowego wysokim module sztywności ACWMS 16 20/30. Mieszanki wykonane zostały z tych samych materiałów składowych (asfalt i kruszywo). Charakteryzowały się taką samą zawartością asfaltu 4,5 % m/m i takim samym uziarnieniem mieszanek mineralnej. Różnica pomiędzy mieszankami polegała na dodaniu włókna polimerowego w ilości 0,3 % m/m w stosunku do mieszanki. Dodanie włókna spowodowało zwiększenie zawartości wolnych przestrzeni z 2,9 do 3,4 % v/v. Wypełnienie wolnych przestrzeni jest 3,0 % mniejsze w przypadku mieszanki z włóknem.

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Właściwości</th>
<th>Wyniki ACWMS 16 20/30L</th>
<th>Wyniki ACWMS 16 20/30L/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gęstość objętościowa mieszanki-mineralnej, g/cm³</td>
<td>2,873</td>
<td>2,852</td>
</tr>
<tr>
<td>2</td>
<td>Gęstość mieszanki mineralno-asfaltowej (dawna gęstość objętościowa), g/cm³</td>
<td>2,656</td>
<td>2,639</td>
</tr>
<tr>
<td>3</td>
<td>Gęstość objętościowa mieszanki mineralno-asfaltowej (dawna gęstość strukturalna), g/cm³</td>
<td>2,579</td>
<td>2,549</td>
</tr>
<tr>
<td>4</td>
<td>Zawartość wolnych przestrzeni, %v/v</td>
<td>2,9</td>
<td>3,4</td>
</tr>
<tr>
<td>5</td>
<td>Wypełnienie asfaltem wolnej przestrzeni, % v/v</td>
<td>79,7</td>
<td>76,7</td>
</tr>
<tr>
<td>6</td>
<td>Odporność na deformacje trwałe (metoda B w powietrzu, 60°C, 10000 cykli)</td>
<td>0,38</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,8</td>
<td>4,6</td>
</tr>
<tr>
<td>7</td>
<td>Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C</td>
<td>85,9</td>
<td>85,6</td>
</tr>
</tbody>
</table>

9.2.2. Odporność na koleinowanie

Na rysunku 46 przedstawiono porównanie przebiegu badania koleinowania w małym aparacie mieszanki porównawczej i mieszanki z włóknem. Dodatek włókna bardzo poprawia odporność na koleinowanie, nawet przy zwiększonej zawartości asfaltu.
Rysunek 46 Porównanie przebiegu koleinowania w małym aparacie mieszanki z włóknem oraz mieszanki porównawczej ACWMS 16 20/30L

9.2.3. Trwałość zmęczeniowa

W tablicach 31-32 przedstawiono wyniki badania zmęczenia oraz parametry obliczeniowe wraz z przedziałem ufności p=95% parametru ε₆ mieszanki AC WMS 16 20/30L z włóknem i bez włókna. Charakterystykę zmęczeniową pokazano na rysunku 47.

Tablica 31 Wyniki badań zmęczenia mieszanki ACWMS 16 20/30L/W

<table>
<thead>
<tr>
<th>próbka</th>
<th>ε, μm/m</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>225</td>
<td>150 803</td>
</tr>
<tr>
<td>2</td>
<td>148</td>
<td>676 218</td>
</tr>
<tr>
<td>3</td>
<td>225</td>
<td>42 001</td>
</tr>
<tr>
<td>4</td>
<td>147</td>
<td>539 210</td>
</tr>
<tr>
<td>5</td>
<td>226</td>
<td>69 901</td>
</tr>
<tr>
<td>7</td>
<td>225</td>
<td>101 302</td>
</tr>
<tr>
<td>8</td>
<td>225</td>
<td>80 402</td>
</tr>
<tr>
<td>9</td>
<td>145</td>
<td>2 256 853</td>
</tr>
<tr>
<td>10</td>
<td>145</td>
<td>2 688 453</td>
</tr>
<tr>
<td>11</td>
<td>180</td>
<td>433 208</td>
</tr>
<tr>
<td>12</td>
<td>180</td>
<td>304 808</td>
</tr>
<tr>
<td>13</td>
<td>146</td>
<td>964 221</td>
</tr>
<tr>
<td>14</td>
<td>182</td>
<td>228 904</td>
</tr>
<tr>
<td>15</td>
<td>147</td>
<td>1 358 621</td>
</tr>
<tr>
<td>16</td>
<td>181</td>
<td>303 507</td>
</tr>
<tr>
<td>17</td>
<td>226</td>
<td>88 001</td>
</tr>
<tr>
<td>18</td>
<td>181</td>
<td>425 209</td>
</tr>
</tbody>
</table>
Tablica 32 Parametry charakterystyki zmęczeniowej ACWMS 16 20/30L/W

<table>
<thead>
<tr>
<th></th>
<th>ε_6</th>
<th>μm/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p=95%$</td>
<td>148</td>
<td>μm/m</td>
</tr>
<tr>
<td>$\varepsilon_{6(\text{max})}$</td>
<td>159</td>
<td>μm/m</td>
</tr>
<tr>
<td>$\varepsilon_{6(\text{min})}$</td>
<td>140</td>
<td>μm/m</td>
</tr>
<tr>
<td>R^2</td>
<td>0,88</td>
<td></td>
</tr>
</tbody>
</table>

Tablica 33 Wyniki badań zmęczenia mieszanek ACWMS 16 20/30L

<table>
<thead>
<tr>
<th>próba</th>
<th>ε, μm/m</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>175</td>
<td>176 801</td>
</tr>
<tr>
<td>2</td>
<td>139</td>
<td>1 383 815</td>
</tr>
<tr>
<td>4</td>
<td>174</td>
<td>221 202</td>
</tr>
<tr>
<td>5</td>
<td>225</td>
<td>72 501</td>
</tr>
<tr>
<td>6</td>
<td>146</td>
<td>1 373 032</td>
</tr>
<tr>
<td>7</td>
<td>149</td>
<td>588 014</td>
</tr>
<tr>
<td>8</td>
<td>228</td>
<td>30 401</td>
</tr>
<tr>
<td>9</td>
<td>180</td>
<td>292 107</td>
</tr>
<tr>
<td>10</td>
<td>224</td>
<td>55 601</td>
</tr>
<tr>
<td>12</td>
<td>180</td>
<td>341 807</td>
</tr>
<tr>
<td>14</td>
<td>147</td>
<td>685 516</td>
</tr>
<tr>
<td>15</td>
<td>145</td>
<td>1 153 826</td>
</tr>
<tr>
<td>16</td>
<td>226</td>
<td>50 501</td>
</tr>
<tr>
<td>17</td>
<td>181</td>
<td>190 104</td>
</tr>
</tbody>
</table>

Tablica 34 Wyniki badań zmęczenia mieszanek ACWMS 16 20/30L

<table>
<thead>
<tr>
<th>$p=95%$</th>
<th>ε_6</th>
<th>μm/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_{6(\text{max})}$</td>
<td>152</td>
<td>μm/m</td>
</tr>
<tr>
<td>$\varepsilon_{6(\text{min})}$</td>
<td>137</td>
<td>μm/m</td>
</tr>
<tr>
<td>R^2</td>
<td>0,94</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 47 Porównanie charakterystyk zmęczeniowych mieszanek ACWMS16 20/30L i ACWMS16 20/30L/W
9.2.4. Sztywność

W tablicy 35 przedstawiono wyniki badań modułu sztywności i kąta przesunięcia fazowego mieszanek.

<table>
<thead>
<tr>
<th>Mieszanka</th>
<th>ACWMS16 20/30L/W</th>
<th>ACWMS16 20/30L/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Próbka</td>
<td>MPa °</td>
<td>MPa °</td>
</tr>
<tr>
<td>1</td>
<td>16371 9,3</td>
<td>17135 9,7</td>
</tr>
<tr>
<td>2</td>
<td>16162 8,6</td>
<td>17059 9,4</td>
</tr>
<tr>
<td>3</td>
<td>17172 7,7</td>
<td>17101 10,1</td>
</tr>
<tr>
<td>4</td>
<td>17134 8,3</td>
<td>18048 9,7</td>
</tr>
<tr>
<td>ŚREDNIA</td>
<td>16709 8,5</td>
<td>17336 9,7</td>
</tr>
<tr>
<td>ODCH.ST.</td>
<td>519 0,7</td>
<td>476 0,3</td>
</tr>
</tbody>
</table>

9.2.5. Ocena uzyskanych wyników

Przedstawione wyniki badań pozwalają stwierdzić, że dodatek włókna umożliwia opracowanie składu mieszanki typu AC WMS zaprojektowanej wg wymagań WT-2. Zastosowanie włókna w zdecydowany sposób poprawiło odporność na deformacje trwałe. Pozostałe parametry mieszanki w odniesieniu do mieszanki porównawczej bez włókna są bardzo zbliżone (sztywność, zmęczenie, wodoodporność).

10. Opracowanie składów mieszanek do badań pakietów wielowarstwowych (zadanie 7).

W ramach pracy przewidziano opracowanie składu mieszanki mineralno-asfaltowej antyzmęczeniowej. Niezbędne było również opracowanie składu drugiej mieszanki w celu wykonania próbek stanowiących pakiet warstw odwzorowujący warunki rzeczywistej nawierzchni.

W rezultacie opracowano skład na następujące mieszanki mineralno-ASFALTOWE:

- **AC8 (80B)** – beton asfaltowy do warstwy antyzmęczeniowej z kruszywem o wymiarze do 8 mm z asfalem modyfikowanym Modbit 80B,
- **ACWMS16 (20/30)** – beton asfaltowy o wysokim module sztywności z kruszywem o wymiarze do 16 mm z asfalem 20/30.

10.1. Mieszanka AC8 (80B) wg rec. TN/251/09-3

10.1.1. Projekt i podstawowe właściwości – AC8 (80B)

A. Informacje ogólne

Podstawa projektu: WT-2 Nawierzchnie Asfaltowe 2008

B. Składniki mieszanki

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Symbol</th>
<th>Rodzaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mączka wapienna</td>
<td>wypełniacz</td>
</tr>
<tr>
<td>2</td>
<td>Granit 0/2 mm</td>
<td>kruszywo drobne granitowe</td>
</tr>
<tr>
<td>3</td>
<td>Bazalt 2/5 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>4</td>
<td>Bazalt 5/8 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>5</td>
<td>Asfalt modyfikowany</td>
<td>Modbit 80B z LOTOS Asfalt – Gdańsk</td>
</tr>
<tr>
<td>6</td>
<td>Włókno</td>
<td>Włókno polimerowe (Tofic)</td>
</tr>
<tr>
<td>7</td>
<td>WETFIX BE</td>
<td>Środek adhezyjny</td>
</tr>
</tbody>
</table>

C. Uziarnienie materiałów mineralnych

<table>
<thead>
<tr>
<th>Wymiar oczek sita # [mm]</th>
<th>Mączka wapienna</th>
<th>Granit 0/2 mm</th>
<th>Bazalt 2/5 mm</th>
<th>Bazalt 5/8 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>11,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0,0</td>
<td>0,0</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td>5,6</td>
<td>0,0</td>
<td>1,6</td>
<td>71,9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,0</td>
<td>9,8</td>
<td>94,4</td>
</tr>
<tr>
<td></td>
<td>0,125</td>
<td>3,20</td>
<td>69,5</td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td>0,063</td>
<td>8,90</td>
<td>13,5</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td><0,063</td>
<td>87,90</td>
<td>7,2</td>
<td>0,1</td>
</tr>
<tr>
<td>Łącznie</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
D. Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Składniki</th>
<th>Mieszanka mineralna, % m/m</th>
<th>Mieszanka mineralno-asfaltowa, % m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mączka wapienna</td>
<td>7,0</td>
<td>6,57</td>
</tr>
<tr>
<td>2</td>
<td>Granit 0/2 [mm]</td>
<td>35,0</td>
<td>32,83</td>
</tr>
<tr>
<td>3</td>
<td>Bazalt 2/5 [mm]</td>
<td>20,0</td>
<td>18,76</td>
</tr>
<tr>
<td>4</td>
<td>Bazalt 5/8 [mm]</td>
<td>38,0</td>
<td>35,64</td>
</tr>
<tr>
<td>5</td>
<td>Włókno polimerowe</td>
<td>-</td>
<td>0,4</td>
</tr>
<tr>
<td>6</td>
<td>Asfalt Modbit 80B</td>
<td>-</td>
<td>5,783</td>
</tr>
<tr>
<td>7</td>
<td>WETFIX BE</td>
<td>-</td>
<td>0,017</td>
</tr>
<tr>
<td>Razem</td>
<td></td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

W mieszanę zastosowano środek adhezyjny: WETFIX BE (0,3 % m/m w stosunku do asfaltu) oraz włókno polimerowe TOFIC (0,4 % m/m w stosunku do mieszanki mineralno-asfaltowej).

E. Krzywa uziarnienia i uziarnienie mieszanki mineralnej AC8 (80B) do warstwy wiążącej

Rysunek 48 Krzywa uziarnienia mieszanki mineralnej AC8 (80B)
F. Uziarnienie mieszanki mineralnej

<table>
<thead>
<tr>
<th>Sito #, Mm</th>
<th>Pozostaje na sicie, (%)</th>
<th>Przechodzi przez sito, (%)</th>
<th>Uziarnienie wg WT-2 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dolne</td>
</tr>
<tr>
<td>11,2</td>
<td>-</td>
<td>100,00</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>1,26</td>
<td>98,74</td>
<td>90</td>
</tr>
<tr>
<td>5,6</td>
<td>27,64</td>
<td>71,10</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>31,54</td>
<td>39,56</td>
<td>35</td>
</tr>
<tr>
<td>0,125</td>
<td>25,42</td>
<td>14,14</td>
<td>8</td>
</tr>
<tr>
<td>0,063</td>
<td>5,41</td>
<td>8,73</td>
<td>5</td>
</tr>
<tr>
<td>< 0,063</td>
<td>8,73</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

G. Zbadane właściwości mieszanki mineralno-asfaltowej AC8 (80B), o składzie optymalnym dla zawartości asfaltu Am=5,8 % m/m

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gęstość objętościowa mieszanki-mineralnej, g/cm³</td>
<td>2,855</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Gęstość mieszanki mineralno-asfaltowej (dawna gęstość objętościowa), g/cm³</td>
<td>2,577</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Gęstość objętościowa mieszanki mineralno-asfaltowej (dawna gęstość strukturalna), g/cm³</td>
<td>2,520</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Zawartość wolnych przestrzeni, %v/v</td>
<td>2,2</td>
<td>$V_{\text{min}} 1,0 \quad V_{\text{max}} 3,0$ $(V_{\text{min}} 2,0 \quad V_{\text{max}} 4,0)^*$</td>
</tr>
<tr>
<td>5</td>
<td>Wypełnienie asfaltem wolnej przestrzeni, % v/v</td>
<td>86,9</td>
<td>$V_{\text{FB,min}} 78 \quad V_{\text{FB,max}} 89$</td>
</tr>
<tr>
<td>6</td>
<td>Odporność na deformacje trwałe (metoda B w powietrzu, 60°C, 10000 cykli)</td>
<td>0,19</td>
<td>$(WTS_{\text{AIR}} 0,3)^*$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,0</td>
<td>$(PRD_{\text{AIR}} 5,0)^*$</td>
</tr>
<tr>
<td>7</td>
<td>Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C</td>
<td>92,0</td>
<td>$\text{ITSR}{90}$ $(\text{ITSR}{90})^*$</td>
</tr>
</tbody>
</table>
10.1.2. Odporność na koleinowanie - AC8 (80B)
Na rysunku 49 przedstawiono wykres z przebiegu badania koleinowania mieszanki AC8 (80B) przeprowadzone na próbkach przygotowanych w laboratorium IBDiM wg recepty TN/251/09-3.

Tablica 36 Wyniki badania koleinowania – pojedyncze próbki, mieszanka AC8

<table>
<thead>
<tr>
<th></th>
<th>AC8 (80B) Próbka 1 – Am=5,8%</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Właściwości</td>
<td>Cykle (przejścia)</td>
<td>2500 (5000)</td>
</tr>
<tr>
<td></td>
<td>Głębokość koleiny, mm</td>
<td>3,80</td>
<td>4,56</td>
</tr>
<tr>
<td></td>
<td>PRD, %</td>
<td>7,3</td>
<td>8,8</td>
</tr>
<tr>
<td></td>
<td>WTS(d10000-d5000), [mm/1000 cykli]</td>
<td></td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td>AC8 (80B) Próbka 2 – Am=5,8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Właściwości</td>
<td>Cykle (przejścia)</td>
<td>2500 (5000)</td>
</tr>
<tr>
<td></td>
<td>Głębokość koleiny, mm</td>
<td>4,16</td>
<td>4,98</td>
</tr>
<tr>
<td></td>
<td>PRD, %</td>
<td>8,0</td>
<td>9,6</td>
</tr>
<tr>
<td></td>
<td>WTS(d10000-d5000), [mm/1000 cykli]</td>
<td></td>
<td>0,20</td>
</tr>
</tbody>
</table>

Rysunek 49 Przebieg i wyniki badania koleinowania mieszanki AC8 (80B)
Tablica 37 Zestawienie wyników koleinowania przy uwzględnieniu różnej zawartości lepiszcza

<table>
<thead>
<tr>
<th>Właściwości</th>
<th>Cykle (przejścia)</th>
<th>2500 (5000)</th>
<th>5000 (10000)</th>
<th>10000 (20000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC8 (80B) Próbka 1 – Am=6,2</td>
<td>Głębokość koleiny, mm</td>
<td>4,43</td>
<td>5,38</td>
<td>6,57</td>
</tr>
<tr>
<td></td>
<td>PRD, %</td>
<td>8,52</td>
<td>10,35</td>
<td>12,6</td>
</tr>
<tr>
<td></td>
<td>WTS(d10000-d5000), [mm/1000 cykli]</td>
<td>0,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC8 (80B) Próbka 2 – Am=6,0</td>
<td>Głębokość koleiny, mm</td>
<td>5,86</td>
<td>8,47</td>
<td>14,22</td>
</tr>
<tr>
<td></td>
<td>PRD, %</td>
<td>11,27</td>
<td>16,29</td>
<td>27,3</td>
</tr>
<tr>
<td></td>
<td>WTS(d10000-d5000), [mm/1000 cykli]</td>
<td>1,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC8 (80B) Próbki 1, 2 – Am=5,8%</td>
<td>Głębokość koleiny, mm</td>
<td>3,98</td>
<td>4,77</td>
<td>5,72</td>
</tr>
<tr>
<td></td>
<td>PRD, %</td>
<td>7,7</td>
<td>9,2</td>
<td>11,0</td>
</tr>
<tr>
<td></td>
<td>WTS(d10000-d5000), [mm/1000 cykli]</td>
<td>0,19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 50 Przebieg i wyniki badania koleinowania mieszanek AC8 (80B) z różnymi zawartościami lepiszcza
10.1.3. Odporność na zmęczenie - AC8 (80B)
Przeprowadzono badania zmęczeniowe metodą belki czteropunktowo zginanej w temperaturze 10˚C na mieszance z włóknem (antyzmęczeniowej). Wyniki badań przedstawiono w tablicy 38 i na rysunku 51.

Tablica 38 Wyniki badań zmęczenia mieszanki AC8 (80B)

<table>
<thead>
<tr>
<th>próbka</th>
<th>ε, μm/m</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>320</td>
<td>567 014</td>
</tr>
<tr>
<td>2</td>
<td>264</td>
<td>1 419 229</td>
</tr>
<tr>
<td>3</td>
<td>379</td>
<td>75 602</td>
</tr>
<tr>
<td>4</td>
<td>374</td>
<td>160 403</td>
</tr>
<tr>
<td>5</td>
<td>324</td>
<td>350 508</td>
</tr>
<tr>
<td>6</td>
<td>262</td>
<td>468 110</td>
</tr>
<tr>
<td>7</td>
<td>319</td>
<td>141 201</td>
</tr>
<tr>
<td>8</td>
<td>374</td>
<td>48 600</td>
</tr>
<tr>
<td>9</td>
<td>322</td>
<td>134 603</td>
</tr>
<tr>
<td>10</td>
<td>259</td>
<td>542 905</td>
</tr>
<tr>
<td>11</td>
<td>262</td>
<td>680 714</td>
</tr>
<tr>
<td>12</td>
<td>375</td>
<td>55 001</td>
</tr>
<tr>
<td>13</td>
<td>262</td>
<td>326 706</td>
</tr>
<tr>
<td>14</td>
<td>258</td>
<td>235 702</td>
</tr>
<tr>
<td>15</td>
<td>197</td>
<td>2 088 416</td>
</tr>
<tr>
<td>16</td>
<td>202</td>
<td>2 126 441</td>
</tr>
<tr>
<td>17</td>
<td>202</td>
<td>2 126 441</td>
</tr>
<tr>
<td>18</td>
<td>199</td>
<td>2 935 253</td>
</tr>
<tr>
<td>19</td>
<td>226</td>
<td>2 036 442</td>
</tr>
<tr>
<td>20</td>
<td>321</td>
<td>211 705</td>
</tr>
<tr>
<td>21</td>
<td>375</td>
<td>82 602</td>
</tr>
<tr>
<td>22</td>
<td>228</td>
<td>1 033 822</td>
</tr>
</tbody>
</table>
10.1.4. **Moduł sztywności - AC8 (80B)**
W ramach realizacji etapu III przeprowadzono badania modułu sztywności metodą belki czteropunktowo zginanej w temperaturze 10°C w wybranych częstotliwościach na mieszance z włóknem. Wyniki badań przedstawiono w tablicy 39.

Tablica 39 Wyniki badania modułu sztywności mieszanki AC8 (80B), [MPa]

<table>
<thead>
<tr>
<th>Próbka</th>
<th>Częstotliwość</th>
<th>1 Hz</th>
<th>2 Hz</th>
<th>5 Hz</th>
<th>8 Hz</th>
<th>10 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6503</td>
<td>7532</td>
<td>9038</td>
<td>9850</td>
<td>10239</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6178</td>
<td>7235</td>
<td>8801</td>
<td>9647</td>
<td>10065</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6742</td>
<td>7871</td>
<td>9451</td>
<td>10291</td>
<td>10718</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>9866</td>
<td>8124</td>
<td>9674</td>
<td>10518</td>
<td>10917</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6377</td>
<td>7382</td>
<td>8890</td>
<td>9705</td>
<td>10097</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6808</td>
<td>7820</td>
<td>9308</td>
<td>10107</td>
<td>10464</td>
</tr>
<tr>
<td>średnia</td>
<td></td>
<td>7079</td>
<td>7661</td>
<td>9193</td>
<td>10020</td>
<td>10417</td>
</tr>
</tbody>
</table>

10.1.5. **Wodoodporność - AC8 (80B)**
Badania wodoodporności przeprowadzono na mieszance z włóknem dla zawartości lepiszcza (Modbit 80B) równej 5,8% oraz 6,0%. Wyniki badań przedstawiono w tablicy 40.
Tablica 40 Zestawienie wyników badań wodoodporności – mieszanka AC8 (80B)

<table>
<thead>
<tr>
<th>Mieszanka</th>
<th>ITS<sub>N</sub> [kPa]</th>
<th>ITS<sub>S</sub> [Kpa]</th>
<th>ITS<sub>R</sub> [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC8 (80B) Am=5,8%</td>
<td>2062</td>
<td>2242</td>
<td>92,0</td>
</tr>
<tr>
<td>AC8 (80B) Am=6,0%</td>
<td>2023</td>
<td>2108</td>
<td>96,0</td>
</tr>
</tbody>
</table>

10.2. Mieszanka ACWMS16 (20/30) wg rec. TN/251/09-4

10.2.1. Projekt i podstawowe właściwości – ACWMS16 (20/30)

Skład mieszanki ACWMS16 został opracowany w laboratorium IBDiM, z materiałów własnych tj.: kruszyw, lepiszcza oraz dodatków. Projektowana mieszanka ACWMS16 stanowi beton asfaltowy o wysokim module sztywności dla ruchu od KR3 do KR6, z asfaltem 20/30, opracowany wg WT-2 Nawierzchnie asfaltowe.

A. Informacje ogólne

Podstawa projektu: WT-2 Nawierzchnie Asfaltowe 2008

B. Składniki mieszanki

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Symbol</th>
<th>Rodzaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mączka wapienna</td>
<td>wypełniacz</td>
</tr>
<tr>
<td>2</td>
<td>Granit 0/2 mm</td>
<td>kr. dr. gran.</td>
</tr>
<tr>
<td>3</td>
<td>Bazalt 2/5 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>4</td>
<td>Bazalt 5/8 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>5</td>
<td>Bazalt 8/11 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>6</td>
<td>Bazalt 11/16 mm</td>
<td>Grys</td>
</tr>
<tr>
<td>7</td>
<td>Asfalt 20/30</td>
<td>asfalt drogowy z LOTOS Asfalt – Gdańsk</td>
</tr>
<tr>
<td>8</td>
<td>WETFIX BE</td>
<td>Środek adhezyjny Akzo Nobel</td>
</tr>
</tbody>
</table>

C. Uziarnienie materiałów mineralnych

<table>
<thead>
<tr>
<th>Wymiary oczek sita # [mm]</th>
<th>Mączka wapienna</th>
<th>Granit 0/2 mm</th>
<th>Bazalt 2/5 mm</th>
<th>Bazalt 5/8 mm</th>
<th>Bazalt 8/11 mm</th>
<th>Bazalt 11/16 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>4,9</td>
</tr>
<tr>
<td>11,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>6,6</td>
<td>81,3</td>
</tr>
<tr>
<td>8</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,3</td>
<td>68,7</td>
<td>12,9</td>
</tr>
<tr>
<td>5,6</td>
<td>0,0</td>
<td>0,0</td>
<td>1,6</td>
<td>71,9</td>
<td>20,5</td>
<td>0,6</td>
</tr>
<tr>
<td>2</td>
<td>0,0</td>
<td>9,8</td>
<td>94,4</td>
<td>24,3</td>
<td>2,8</td>
<td>0,1</td>
</tr>
<tr>
<td>0,125</td>
<td>2,23</td>
<td>69,5</td>
<td>3,8</td>
<td>0,3</td>
<td>0,9</td>
<td>0,0</td>
</tr>
<tr>
<td>0,063</td>
<td>13,05</td>
<td>13,5</td>
<td>0,1</td>
<td>0,1</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td><0,063</td>
<td>84,72</td>
<td>7,2</td>
<td>0,1</td>
<td>0,3</td>
<td>0,3</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Łącznie 100 100 100 100 100 100 100
D. Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Składniki</th>
<th>Mieszanka mineralna, % m/m</th>
<th>Mieszanka mineralno-asfaltowa, % m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mączka wapienna</td>
<td>3,5</td>
<td>3,34</td>
</tr>
<tr>
<td>2</td>
<td>Granit 0/2 [mm]</td>
<td>35,0</td>
<td>33,43</td>
</tr>
<tr>
<td>3</td>
<td>Bazalt 2/5 [mm]</td>
<td>14,0</td>
<td>13,37</td>
</tr>
<tr>
<td>4</td>
<td>Bazalt 5/8 [mm]</td>
<td>12,5</td>
<td>11,94</td>
</tr>
<tr>
<td>5</td>
<td>Bazalt 8/11 [mm]</td>
<td>15,0</td>
<td>14,32</td>
</tr>
<tr>
<td>6</td>
<td>Bazalt 11/16 [mm]</td>
<td>20,0</td>
<td>19,10</td>
</tr>
<tr>
<td>7</td>
<td>Asfalt 20/30</td>
<td>-</td>
<td>4,49</td>
</tr>
<tr>
<td>8</td>
<td>WETFIX BE</td>
<td>-</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Razem</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

E. Krzywa uziarnienia i uziarnienie mieszanki mineralnej ACWMS16 (20/30) do warstwy wiążącej

Rysunek 52 Krzywa uziarnienia mieszanki mineralnej ACWMS16 (20/30) do warstwy wiążącej

F. Uziarnienie mieszanki mineralnej

<table>
<thead>
<tr>
<th>Sito #, Mm</th>
<th>Pozostaje na sicie, (%)</th>
<th>Przechodzi przez sito, (%)</th>
<th>Uziarnienie wg WT-2 2008 wobec ACWMS 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dolne</td>
</tr>
<tr>
<td>22,4</td>
<td>-</td>
<td>100,0</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>0,98</td>
<td>99,0</td>
<td>90</td>
</tr>
<tr>
<td>11,2</td>
<td>17,25</td>
<td>81,77</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>13,29</td>
<td>68,48</td>
<td>-</td>
</tr>
<tr>
<td>5,6</td>
<td>12,41</td>
<td>56,07</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>20,12</td>
<td>35,95</td>
<td>35</td>
</tr>
<tr>
<td>0,125</td>
<td>25,11</td>
<td>10,84</td>
<td>7</td>
</tr>
<tr>
<td>0,063</td>
<td>5,26</td>
<td>5,58</td>
<td>5</td>
</tr>
<tr>
<td>< 0,063</td>
<td>5,58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

str. 75
G. Zbadane właściwości mieszanki mineralno-asfaltowej ACWMS16 (20/30), o składzie optymalnym dla zawartości asfaltu Am=4,5 % m/m

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gęstość objętościowa mieszanki-mineralnej, g/cm³</td>
<td>2,877</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Gęstość mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,656</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Gęstość objętościowa mieszanki mineralno-asfaltowej, g/cm³</td>
<td>2,569</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Zawartość wolnych przestrzeni, %v/v</td>
<td>3,3</td>
<td>V_min 2,0 V_max 4,0</td>
</tr>
<tr>
<td>5</td>
<td>Wypełnienie asfaltem wolnej przestrzeni, % v/v</td>
<td>77,81</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Odporność na deformacje trwałe (metoda B w powietrzu, 60°C, 10000 cykli)</td>
<td>0,10 WTS_AIR 0,1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C</td>
<td>2,9 PRD_AIR 3,0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Trwałość zmęczeniowa, µm/m</td>
<td>144</td>
<td>ε_6-130</td>
</tr>
<tr>
<td>9</td>
<td>Sztywność, MPa</td>
<td>17802</td>
<td>S_min 14000</td>
</tr>
</tbody>
</table>

10.2.2. Odporność na koleinowanie – ACWMS16 (20/30)

Rysunek 53 Przebieg i wyniki badania koleinowania w małym aparacie mieszanka ACWMS16 (20/30)
10.2.3. Odporność na zmęczenie - ACWMS16 (20/30)

W tablicach 41-42 przedstawiono wyniki badania zmęczenia mieszanki ACWMS16.

Tablica 41 Wyniki badań zmęczenia mieszanki ACWMS16 (20/30)

<table>
<thead>
<tr>
<th>próbka</th>
<th>ε, µm/m</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>175</td>
<td>1 768 01</td>
</tr>
<tr>
<td>B2</td>
<td>139</td>
<td>1 383 815</td>
</tr>
<tr>
<td>B4</td>
<td>174</td>
<td>2 212 02</td>
</tr>
<tr>
<td>B5</td>
<td>225</td>
<td>7 250 1</td>
</tr>
<tr>
<td>B6</td>
<td>146</td>
<td>1 373 032</td>
</tr>
<tr>
<td>B7</td>
<td>149</td>
<td>5 88 014</td>
</tr>
<tr>
<td>B8</td>
<td>228</td>
<td>3 040 1</td>
</tr>
<tr>
<td>B9</td>
<td>180</td>
<td>2 92 107</td>
</tr>
<tr>
<td>B10</td>
<td>224</td>
<td>5 50 01</td>
</tr>
<tr>
<td>B12</td>
<td>180</td>
<td>3 41 807</td>
</tr>
<tr>
<td>B14</td>
<td>147</td>
<td>6 85 516</td>
</tr>
<tr>
<td>B15</td>
<td>145</td>
<td>1 153 826</td>
</tr>
<tr>
<td>B16</td>
<td>226</td>
<td>5 05 01</td>
</tr>
<tr>
<td>B17</td>
<td>181</td>
<td>1 91 104</td>
</tr>
</tbody>
</table>

Tablica 42 Wyniki badań zmęczenia mieszanki ACWMS16 (20/30)

<table>
<thead>
<tr>
<th>ε</th>
<th>144</th>
<th>µm/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_{(\text{max})}$</td>
<td>152</td>
<td>µm/m</td>
</tr>
<tr>
<td>$\varepsilon_{(\text{min})}$</td>
<td>137</td>
<td>µm/m</td>
</tr>
<tr>
<td>R^2</td>
<td>0,94</td>
<td></td>
</tr>
</tbody>
</table>

10.2.4. Moduł sztywności - ACWMS16 (20/30)

W tablicy 43 przedstawiono wyniki badań modułu sztywności i kąta przesunięcia fazowego mieszanki ACWMS16 (20/30).
10.2.5. Wodoodporność - ACWMS16 (20/30)

Wyniki wskaźnika odporności na działanie wody ITSR przedstawiono w tablicy 44. Odporność na działanie wody określono na próbkach przechowywania w 40°C z jednym cyklem zamrażania, badanie wykonano w temperaturze 15°C.

Tablica 44 Wyniki odporności na działanie wody - mieszanka ACWMS16 (20/30)

<table>
<thead>
<tr>
<th>Stan próbek</th>
<th>Wytrzymałość na rozciąganie pośrednie, kPa</th>
<th>ITSR, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACWMS16 (20/30)</td>
<td>ITS<sub>S</sub></td>
<td>ITS<sub>N</sub></td>
</tr>
<tr>
<td>Próbk i suche</td>
<td>3745,5</td>
<td>-</td>
</tr>
<tr>
<td>Próbk i pielęgnowane</td>
<td>-</td>
<td>3216,8</td>
</tr>
</tbody>
</table>
10.3. Ocena zaprojektowanych mieszanek

W tablicy 45 zestawiono wyniki badań mieszanek z włóknem AC8 i mieszanek AC WMS 16.

Tablica 45 Zbiorcze zestawienie wyników badań AC8 i ACWMS 16

<table>
<thead>
<tr>
<th>Właściwość</th>
<th>Mieszanka</th>
<th>Jednostka</th>
<th>AC8 80B</th>
<th>ACWMS16 20/30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asfalt</td>
<td></td>
<td>80B</td>
<td>20/30</td>
<td></td>
</tr>
<tr>
<td>Zawartość asfaltu</td>
<td></td>
<td>% m/m</td>
<td>5,8</td>
<td>4,5</td>
</tr>
<tr>
<td>Zawartość wolnych przestrzeni</td>
<td></td>
<td>% v/v</td>
<td>2,2</td>
<td>3,3</td>
</tr>
<tr>
<td>Odporność na koleinowanie, WTS\textsubscript{AIR}</td>
<td>mm/1000 cykli</td>
<td>0,19</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Odporność na koleinowanie, WTS\textsubscript{AIR}</td>
<td>%</td>
<td>11</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>Wodoodporność ITSR</td>
<td>%</td>
<td>92</td>
<td>85,9</td>
<td></td>
</tr>
<tr>
<td>Zmęczenie, ε_6</td>
<td>μm/m</td>
<td>261</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Sztywność</td>
<td>MPa</td>
<td>10417</td>
<td>17802</td>
<td></td>
</tr>
<tr>
<td>Kąt przesunięcia fazowego</td>
<td>°</td>
<td>16,4</td>
<td>9,9</td>
<td></td>
</tr>
</tbody>
</table>

Wg WT-2 dla mieszanki AC8 dla ruchu KR1-KR2 nie przewidziano wymagań odnośnie odporności na koleinowanie, natomiast dla ruchu KR3-4 przewidziano wymaganie WTS\textsubscript{AIR} < 0,3, WTS\textsubscript{AIR} < 5,0. Badania koleinowania wykonane na próbkach z mieszanek antyzmęczeniowej wykazały odporność na koleinowanie WTS=0,19, co spełnia postawione w WT-2 (wobec KR3-4), jednak odnotowana procentowa głębokość koleiny PRD jest zbyt wysoka w odniesieniu do wymagań tj. PRD=11). Obydwie mieszanki spełniły wymagania w zakresie wodoodporności. Mieszanka AC WMS16 spełniła wymagania w zakresie odporności zmęczeniowej i sztywności. Mieszanka AC8 charakteryzuje się bardzo wysoką trwałością zmęczeniową (niemal dwukrotnie wyższą niż AC WMS 16), przy jednocześnie mniejszym module sztywności i większym udziale fazy lepkiej modułu (większy kąt przesunięcia fazowego).
11. Badania pakietów warstw

11.1. Próbki do badań

W laboratorium IBDiM przygotowano płyty (rysunek 54) stanowiące pakiet dwóch warstw składający się z 4 cm warstwy mieszanki AC8 (80B) i 6 cm warstwy mieszanki ACWMS16 (20/30) symulujący warunki pracy w rzeczywistej nawierzchni. Płyty o wymiarach 50x18x10cm, przygotowano w technologii „gorące na gorące”. Następnie z płyt wycięto próbki do badań zmęczeniowych o wymiarach 38x6,3x5cm (rysunek 55).

Rysunek 54 Płyta stanowiąca pakiet warstw z mieszanek AC8 i ACWMS16

Rysunek 55 Widok belek wyciętych z pakietu warstw
Dodatkowo w stosunku do założeń planu pracy zdecydowano przeprowadzić badania na próbkach warstwowych wyciętych z płyt pochodzących z odcinka testowego realizowanego w ramach projektu badawczego SPENS [25]. W przywołanej pracy badawczej przeprowadzono badania nawierzchni z warstwą antyzmęczeniową z włóknem (mieszanka asfaltu piaskowego). Biorąc pod uwagę bardzo zachęcające wyniki tego projektu postanowiono rozszerzyć program niniejszej pracy. Przygotowane próby belkowe składały się z warstwy antyzmęczeniowej APAF grubości 1,5 cm i warstwy ACWMS 16 20/30 grubości 3,5 cm.

Rysunek 56 Widok płyt z odcinka testowego SPENS
11.2. Wyniki badań

W tablicach 46 – 49 przedstawiono wyniki badań zmęczeniowych oraz parametry obliczeniowe wraz z przedziałem ufności p=95% parametru ε_6 pakietu warstw AC8+ACWMS16 oraz APAF+ACWMS 16.

Tablica 46 Wyniki badań zmęczenia pakietu AC8+ACWMS 16

<table>
<thead>
<tr>
<th>próbka</th>
<th>ε, μm/m</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>205,2</td>
<td>346 707</td>
</tr>
<tr>
<td>2</td>
<td>179,5</td>
<td>395 507</td>
</tr>
<tr>
<td>3</td>
<td>176,8</td>
<td>918 820</td>
</tr>
<tr>
<td>4</td>
<td>201,3</td>
<td>196 805</td>
</tr>
<tr>
<td>5</td>
<td>301,5</td>
<td>116 103</td>
</tr>
<tr>
<td>6</td>
<td>323,3</td>
<td>10 401</td>
</tr>
<tr>
<td>7</td>
<td>175,2</td>
<td>1 577 034</td>
</tr>
<tr>
<td>8</td>
<td>346,0</td>
<td>16 801</td>
</tr>
<tr>
<td>9</td>
<td>152,0</td>
<td>3 061 266</td>
</tr>
<tr>
<td>10</td>
<td>296,3</td>
<td>61 402</td>
</tr>
<tr>
<td>11</td>
<td>347,8</td>
<td>27 201</td>
</tr>
<tr>
<td>12</td>
<td>250,1</td>
<td>46 102</td>
</tr>
<tr>
<td>13</td>
<td>350,6</td>
<td>19 701</td>
</tr>
<tr>
<td>14</td>
<td>177,7</td>
<td>223 805</td>
</tr>
</tbody>
</table>

Tablica 47 Parametry charakterystyki zmęczeniowej pakietu AC8+ACWMS 16

<table>
<thead>
<tr>
<th>p=95%</th>
<th>ε_6</th>
<th>164</th>
<th>μm/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_6(max)</td>
<td>192</td>
<td>μm/m</td>
<td></td>
</tr>
<tr>
<td>ε_6(min)</td>
<td>140</td>
<td>μm/m</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0,85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablica 48 Wyniki badań zmęczenia pakietu APAF+ACWMS 16

<table>
<thead>
<tr>
<th>próbka</th>
<th>ε, μm/m</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>260</td>
<td>308506</td>
</tr>
<tr>
<td>2</td>
<td>375</td>
<td>73102</td>
</tr>
<tr>
<td>3</td>
<td>257</td>
<td>213103</td>
</tr>
<tr>
<td>4</td>
<td>263</td>
<td>434510</td>
</tr>
<tr>
<td>5</td>
<td>372</td>
<td>41401</td>
</tr>
<tr>
<td>6</td>
<td>258</td>
<td>500615</td>
</tr>
<tr>
<td>7</td>
<td>377</td>
<td>28701</td>
</tr>
<tr>
<td>8</td>
<td>207</td>
<td>1070421</td>
</tr>
<tr>
<td>9</td>
<td>205</td>
<td>997026</td>
</tr>
<tr>
<td>10</td>
<td>376</td>
<td>36101</td>
</tr>
<tr>
<td>11</td>
<td>207</td>
<td>2637631</td>
</tr>
<tr>
<td>12</td>
<td>263</td>
<td>354607</td>
</tr>
<tr>
<td>13</td>
<td>212</td>
<td>1055419</td>
</tr>
<tr>
<td>14</td>
<td>378</td>
<td>52702</td>
</tr>
<tr>
<td>15</td>
<td>261</td>
<td>52702</td>
</tr>
</tbody>
</table>

Tablica 49 Parametry charakterystyki zmęczeniowej pakietu APAF+ACWMS 16

<table>
<thead>
<tr>
<th>ε_6</th>
<th>211</th>
<th>μm/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_{6,(\text{max})}$</td>
<td>238</td>
<td>μm/m</td>
</tr>
<tr>
<td>$\varepsilon_{6,(\text{min})}$</td>
<td>187</td>
<td>μm/m</td>
</tr>
<tr>
<td>R^2</td>
<td>0,84</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 57 Charakterystyki zmęczeniowe układów dwuwarstwowych
11.3. Analiza wyników badań

Na rysunkach 58-59 przedstawiono charakterystyki zmęczeniowe pakietów warstw i charakterystyki zmęczeniowe poszczególnych mieszanek. Można zauważyć, że w obydwu przypadkach wykresy pakietów dwuwarstwowych leżą pomiędzy wykresami dla mieszanki ACWMS16 i mieszanek z włóknem (APAF i AC8). Można na tej podstawie wnioskować, że zastosowana mieszanka ACWMS16 ma gorsze właściwości niż materiał (próbka) kompozytowy z warstwą antyzmęczeniową z włóknem. Na tej podstawie można wnioskować, że zastosowanie warstwy antyzmęczeniowej w spodzie warstw asfaltowych, czyli w miejscu najbardziej narażonym na powstanie (inicjację) spękań zmęczeniowych jest korzystne i powinno poprawić trwałość zmęczeniową całej konstrukcji. Jest to potwierdzenie obserwacji z badań odcinków doświadczalnych w ramach projektu SPENS [25].

Rysunek 58 Charakterystyki zmęczeniowe pakietu AC8+ACWMS16 oraz poszczególnych mieszanek
12. Podsumowanie i wnioski

Założeniem niniejszej pracy było określenie w jakim stopniu wpływa dodatek włókien syntetycznych zastosowanych w mieszankach mineralno – asfaltowych. Zagadnienie wzmacniania asfaltowych nawierzchni drogowych jest powszechnie znane, ale zastosowany do tego celu materiał jest niekonwencjonalny. Ze względu na specjalny charakter użytych włókien przeprowadzono bardzo szeroki zakres badań. Wykonano badania mające na celu sprawdzenie działania włókien w różnych warunkach eksploatacji nawierzchni asfaltowej tj. odporności na deformacje trwałe, odporności niskotemperaturowej, odporności na działanie wody oraz właściwości użytkowe czyli zmęczenie.

Analizując otrzymane wyniki badań można stwierdzić, że w przypadku mieszanek z włóknem:

- następuje poprawa odporności na deformacje trwałe. Niezależnie od rodzaju zastosowanego aparatu (mały czy duży koleinomierz) do badania koleinowania uzyskano potwierdzenie, że dodatek włókien znacznie wpływa na zmniejszenie powstawania deformacji por. pkt. 9.1.2.
zwiększenie trwałości zmęczeniowej. Analizując wyniki badań zmęczenia obserwujemy, że następuje poprawa tej cechy dla mieszanek w stanie oryginalnym i po starzeniu technologicznym, a tylko w przypadku mieszanek postarzonych eksploatacyjnie widzimy nieznaczny spadek zmęczenia por. pkt. 9.1.3.

sztywność mieszanek MMA kształtuje się praktycznie tym samym poziomie co mieszanki porównawczej. Należałoby to zjawisko tłumaczyć tym, iż zastosowane włókno nie stanowi „swoistej gąbki” chłonącej lepiszcze z mieszanek. Działanie tego włókna polega na zatrzymaniu asfaltu na ziarnach kruszywa i stanowi pewien rodzaj stabilizacji por. pkt. 9.1.4.

odporność na pękanie niskotemperaturowe, niezależnie czy mieszanka była poddana procesowi starzenia czy nie, nieznacznie spada w porównaniu z mieszanką porównawczą por. pkt. 9.1.6.

wodoodporności mieszanek z włóknem we wszystkich stanach okazały się natomiast lepsze por. pkt. 9.1.5.

Następnym celem stawianym w tej pracy było opracowanie recepty na drobnoziarnistą mieszankę z włóknem, która stanowiłaby warstwę antyzmęczeniową w konstrukcji nawierzchni drogowej. Do tego celu zaprojektowano skład mieszanek AC8 z asfalem 80B i dodatkiem włókien polimerowych. Parametry i właściwości mieszanek zamieszczono w pkt. 10.1. Jako warstwę wiążącą zaproponowano mieszankę ACWMS16 (20/30), której parametry techniczne zamieszczono w pkt. 10.2. Obydwie mieszanki miały stanowić, w późniejszym okresie, Pakiet warstw do dalszych badań. Mieszanka AC8 charakteryzowała się bardzo wysoką trwałością zmęczeniową, prawie dwukrotnie wyższą niż ACWMS16, przy jednoczesnie ponad 30 procentowym spadku modułu sztywności w stosunku do ACWMS16. Pakiet warstw mieszanek AC8 i ACWMS16 przygotowywano w płytkach, w technologii gorące na gorące, a następnie wycinano beleczki, w których stosunek warstw mieszanek AC8 do ACWMS16 wynosił 15 mm do 35 mm. Przeprowadzone badania zmęczeniowe poszczególnych mieszanek osobno jak i pakietu warstw wykazują, że zastosowanie warstwy antyzmęczeniowej w spodzie warstw asfaltowych, czyli w miejscu najbardziej narażonym na powstanie (inicjację) spękań zmęczeniowych jest korzystne i powinno poprawić trwałość
zmęczeniową całej konstrukcji. Grafczny obraz charakterystyk zmęczeniowych poszczególnych mieszanek przedstawiono na rys. 58 i przeanalizowano w pkt. 11.3.

Dodatkowo do założeń programu pracy zamieszczono wyniki badań próbek, pochodzących ze zrealizowanego projektu badawczego SPENS. Próbki zostały przygotowane w podobny sposób, stosunek warstw mieszanek wynosił 15 mm do 35 mm, z tym że mieszankę AC8 zastąpiono mieszanką APAF. W pkt. 11 i na rys. 59 przedstawiono szczegółowe wyniki badań. Wyniki badań potwierdzają wcześniejsze spostrzeżenia, że stosowanie warstw antyspękaniowych powinno korzystnie wpłynąć na trwałość zmęczeniową całej konstrukcji.

Wyniki badań, które zostały przedstawione w niniejszym opracowaniu są na tyle obiecujące, że należało by je dalej kontynuować pod kątem modelowania mechanistycznego konstrukcji oraz zaprojektowania i wykonania próbnego odcinka testowego drogi.

Mając na uwadze, że zastosowane włókna poprawiają szereg cech i właściwości mieszanek mineralno-asfaltowych pojawia się możliwość szerszego zainteresowania projektantów i wykonawców tego typu produktem.
13. Literatura

1 Selection of Laboratory Aging Procedures for Asphalt-Aggregate Mixtures, SHRP-A-383
3 Sybilski D.: Modyfikatory i dodatki do asfaltów drogowych. Część 1: Modyfikatory lepiszcza. Drogownictwo 2, 2000, 55, s. 35-42, Część 2: Modyfikatory i dodatki do mieszanek. Drogownictwo 3, 2000, 55, s. 67-72
5 PN-S-96025:2000 Drogi samochodowe i lotniskowe – Nawierzchnie asfaltowe – Wymagania
6 Sybilski D., W.Bańkowski; Mularzuk R.: „Zasady wykonywania nawierzchni o zwiększonej odporności na koleinowanie i zmęczenie” – Warszawa 2007
7 PN-EN 12697-22 - Mieszanki mineralno-asfaltowe -- Metody badań mieszanek mineralno-asfaltowych na gorąco -- Część 22: Koleinowanie
11 Pronk A.C.: „Fatigue lives of asphalt beams in 2 and 4 point dynamic bendings tests based on a ‘new’ fatigue life definition using the dissipated energy concept. Controlled displacement mode” – DWW 1997;
12 Rowe G.M., Bouldin M.G. „Improved techniques to evaluate the fatigue resistance of asphalt mixtures”, Eurobitume 2000;
15 Sybilski D.: ”Wyznaczanie krzywej wiodącej mieszanki mineralno-asfaltowej”, IV Międzynarodowa Konferencja "Trwałe i bezpieczne nawierzchnie drogowe”, Kielce 1998;
18 Monismith C.L., Secor G.A., Secor K.E.: Temperature Induced Stresses and Deformations in Asphalt Concrete. Proc. AAPT 34, 1965
22 Arand W., Sybilski D.: Wpływ zastosowania polskich asfaltów drogowych na właściwości betonu asfaltowego w niskiej temperaturze. Prace IBDM 3, 1992
23 AASHTO TP10-93 :"Standard test method for thermal restrained specimen tensile strenght"
24 Zasady wykonywania nawierzchni asfaltowej o zwiększonej odporności na koleinowanie i zmęczenie (ZW-WMS 2007)
25 Bańkowski W., Sybilski D., i inni: „Validation of innovative pavement structures on test section with use accelerated loading test”