WERYFIKACJA I AKTUALIZACJA
„KATALOGU TYPOWYCH KONSTRUKCJI NAWIERZCHNI
PODATNYCH I PÓŁSZTYWNYCH”
Z 1997 ROKU

RAPORT Z TRZECIEGO ETAPU

Opracowano na zlecenie:

Generalna Dyrekcja Dróg
Krajowych i Autostrad
ul. Żelazna 59
00–848 WARSZAWA

Opracowali:

prof. dr hab. inż. Józef Judycki – autor kierujący

dr inż. Piotr Jaskuła

dr inż. Marek Pszczoła

mgr inż. Dawid Ryś

mgr inż. Mariusz Jaczewski

dr inż. Jacek Alenowicz

Kierownik Katedry Inżynierii Drogowej - prof. dr hab. inż. Józef Judycki

Gdańsk, listopad 2011
SPIS TREŚCI

1. WSTĘP ... 7
 1.1. PODSTAWA OPRACOWANIA ... 7
 1.2. CEL PRACY ... 7
 1.3. ZAKRES PRACY ... 9
 1.3.1. Zakres całej kilkuetapowej pracy badawczej ... 9
 1.3.2. Zakres III etapu pracy stanowiącego niniejsze opracowanie 10

2. DOSTOSOWANIE KATALOGU DO ZWIĘKSZONEGO OBCIĄŻENIA DRÓG PRZEZ RUCH. AKTUALIZACJA WSPÓLCZYNNIKÓW PRZELICZENIOWYCH ORAZ METODY WYZNACZANIA RUCHU OBLICZENIOWEGO. ... 15
 2.1. WPROWADZENIE ... 15
 2.1.1. Przedmiot opracowania ... 15
 2.1.2. Zakres opracowania .. 15
 2.2. WYZNACZENIE ŚREDNICH WSPÓLCZYNNIKÓW RÓWNOWAŻNOŚCI OSI DLA POSZCZEGÓLNYCH PUNKTÓW POMIAROWYCH .. 16
 2.2.1. Dane wejściowe .. 16
 2.2.2. Struktura ruchu na punktach pomiarowych .. 18
 2.2.3. Weryfikacja błędnych rekordów pomiarowych .. 21
 2.3. WYZNACZENIE ŚREDNICH WSPÓLCZYNNIKÓW RÓWNOWAŻNOŚCI OBCIĄŻENIA POJAZDÓW CIĘŻAROWYCH ... 22
 2.3.1. Współczynniki równoważności obciążenia osi ... 23
 2.3.2. Obliczenie średnich współczynników równoważności obciążenia pojazdów ... 27
 2.4. ANALIZA ZMIAN RUCHU W CZASIE .. 33
 2.4.1. Zmiany natężenia ruchu ciężkiego .. 33
 2.4.2. Zmiany obciążenia drogi pojazdami ruchu ciężkiego ... 37
 2.4.3. Wpływ sezonowych zmian obciążenia drogi na wartość średnich współczynników równoważności obciążenia pojazdów ... 40
 2.5. Wpływ pojazdów przecižonych na średnie współczynniki równoważności obciążenia osi ... 42
 2.5.1. Limity nacisków osi pojazdów obowiązujące w Polsce .. 42
 2.5.2. Dopuszczalne masy pojazdów ruchu ciężkiego ... 44
 2.5.3. Wyznaczenie korelacji między udziałami pojazdów przekraczających limit nacisków osi a współczynnikiem równoważności obciążenia pojazdu. ... 45
 2.5.4. Wyznaczenie korelacji między udziałem pojazdów przekraczających limit masy a współczynnikiem równoważności obciążenia pojazdu. 47
 2.5.5. Przyjęcie poziomu przekroczenia limitów obciążenia osi dla polskich dróg i obliczenie dla nich współczynników równoważności obciążenia pojazdów. ... 48
2.6. Dobór współczynników przeliczeniowych pojazdów ruchu ciężkiego dla nawierzchni podatnych ... 50

2.7. Porównanie obliczonych współczynników przeliczeniowych z ich odpowiednikami wykorzystywanymi w wybranych krajach europejskich 51

2.7.1. Porównanie metod obliczania ruchu projektowego wg katalogu polskiego i niemieckiego. Porównanie współczynników równoważności obciążenia pojazdów ze współczynnikami niemieckimi ... 52

2.7.2. Współczynniki przeliczeniowe zamieszczone w brytyjskiej instrukcji do projektowania nawierzchni. .. 53

2.7.3. Austriackie współczynniki do wyznaczania ruchu obliczeniowego 57

2.7.4. Francuska metoda wyznaczania ruchu obliczeniowego 61

2.7.5. Wnioski wynikające z porównania współczynników stosowanych w Niemczech, Wielkiej Brytanii, Austrii, Francji i Polsce 63

2.8. Przyjęcie okresu projektowego .. 64

2.9. Propozycja zmian w klasyfikacji ruchu do projektowania nawierzchni .. 65

2.10. Wpływ parametrów technicznych drogi na intensywność oddziaływania pojazdów ruchu ciężkiego na nawierzchnię drogową 68

2.10.1. Wpływ szerokości pasa ruchu .. 68

2.11. Ciśnienie kontaktowe na styku opony i nawierzchni do projektowania konstrukcji nawierzchni drogowych ... 70

2.12. Podsumowanie .. 74

2.13. Literatura .. 76

3. Opracowanie modeli zmęczeniowych do weryfikacji polskiego „Katalogu typowych konstrukcji nawierzchni podatnych i półsztywnych” z 1997 roku ... 78

3.1. Wstęp .. 78

3.2. Kryteria użyte do opracowania Katalogu (1997) 78

3.3. Wybór nowych kryteriów do weryfikacji Katalogu (1997) 82

3.3.1. Przyczyny poszukiwania nowych kryteriów ... 82

3.4. Opis kryteriów użytych w nowej mechanistyczno–empirycznej metodzie AASHTO 2004 .. 83

3.4.1. Wprowadzenie ... 83

3.4.2. Kryterium AASHTO 2004 spękania zmęczeniowych warstw asfaltowych .. 85

3.4.3. Kryterium AASHTO 2004 dla deformacji trwałych 109

3.4.4. Kryterium AASHTO dotyczące spękania zmęczeniowych warstw związanych hydraulicznie .. 109

3.5. Opis kryteriów użytych w francuskiej metodzie projektowania konstrukcji nawierzchni .. 114

3.5.1. Wprowadzenie ... 114

3.5.2. Francuskie kryterium spękania zmęczeniowych warstw asfaltowych 115
3.5.3. Kryterium kolein strukturalnych (kryterium odkształceń podłoża gruntowego) [4], [5], [17] .. 127
3.5.4. Kryteria dla nawierzchni półsztywnych [4], [5], [17] 128
3.5.5. Kryteria dla nawierzchni kompozytowych [4], [5], [17] 139
3.6. PODSUMOWANIE... 149
3.7. LITERATURA ... 149

4. PORÓWNANIE KATALOGÓW TYPOWYCH NAWIERZCHNI PODATNYCH I PÓŁSZTYWNYCH AUSTRII, FRANCJI, NIEMIEC, POLSKI I METODY WIELKIEJ BRYTANII.. 151
4.1. WPROWADZENIE... 151
4.2. DANE OGÓLNE O KATALOGACH.. 151
 4.2.1. Katalog austriacki [4].. 151
 4.2.2. Katalog niemiecki [3].. 152
 4.2.3. Katalog francuski [2].. 155
4.3. NAWIERZCHNIE WYBRANE DO PORÓWNANIA.............................. 159
 4.3.1. Nawierzchnie wybrane z katalogu polskiego [1]............................ 159
 4.3.2. Nawierzchnie wybrane z katalogu niemieckiego [3].................... 159
 4.3.3. Nawierzchnie wybrane z katalogu austriackiego [4].................... 161
 4.3.4. Nawierzchnie wybrane z katalogu francuskiego [2].................... 161
 4.3.5. Wybrane nawierzchnie brytyjskie ... 164
4.4. RÓŻNICE WYSTĘPUJĄCE W NAWIERZCHNIACH KATALOGOWYCH... 164
 4.4.1. Różne grubości podbudów zasadniczych i warstw asfaltowych..... 165
 4.4.2. Różne wymagania wobec modułów wzmocnionego podłoża pod podbudowami zasadniczymi ... 166
 4.4.3. Różne metody pomiaru nośności podłoża i warstw podbudów 167
 4.4.4. Różne charakterystyki mechaniczne podbudów zasadniczych z chudego betonu i związanych spoiwami hydraulicznymi..................... 168
 4.4.5. Różne ciężary równoważnych osi standardowych 168
 4.4.6. Długość okresu projektowego nawierzchni 169
 4.4.7. Ruch maksymalny .. 169
4.5. PORÓWNANIE KONSTRUKCJI NAWIERZCHNI O PODBUDOWACH ZASADNICZYN Z KRUSZYWA ŁAMANEGO NIEZWIĄZANEGO... 170
 4.5.1. Porównanie grubości warstw asfaltowych na podbudowach
 zasadniczych z kruszywa łamanego ... 170
 4.5.2. Porównanie grubości zastępczych nawierzchni o podbudowach
 zasadniczych z kruszywa łamanego ... 173
4.6. PORÓWNANIE KONSTRUKCJI NAWIERZCHNI O PODBUDOWACH ASFALTOWYCH
 UŁOŻONYCH WPROST NA WZMOCNIONYM PODŁOŻU 176
4.7. PORÓWNANIE KONSTRUKCJI NAWIERZCHNI O PODBUDOWACH ZASADNICZYN
 Z CHUDEGO BETONU I ZWIĄZANYCH SPOIWEM HYDRAULICZNYM 177
 4.7.1. Porównanie grubości warstw asfaltowych na podbudowach
 zasadniczych z chudego betonu i związanych spoiwem hydraulicznym.. 178
4.7.2. Porównanie grubości zastępczych nawierzchni na podbudowach zasadniczych z chudego betonu i związanych cementem
4.8. Porównanie konstrukcji nawierzchni na podbudowach stabilizowanego cementem lub innym społem hydraulicznym
4.9. Wnioski
4.10. Literatura

5. Określenie temperatury ekwiwalentnej do projektowania konstrukcji nawierzchni w Polsce

5.1. Wprowadzenie
5.2. Dostęp do danych meteorologicznych
5.2.1. Wprowadzenie
5.2.2. Procedura uzyskania danych meteorologicznych
5.2.3. Weryfikacja poprawności uzyskanych danych temperaturowych
5.3. Metodyka obliczeń temperatury ekwiwalentnej
5.3.1. Sposób wyboru stacji meteorologicznych
5.3.2. Zestawienie średnich miesięcznych temperatur powietrza
5.3.3. Wyznaczenie średnich miesięcznych temperatur warstw asfaltowych
5.3.4. Określenie trwałości zmęczeniowej konstrukcji nawierzchni
5.3.5. Wyznaczenie trwałości zmęczeniowych w poszczególnych miesiącach
5.3.6. Ocena rozkładu ruchu drogowego w ciągu roku
5.3.7. Obliczenie trwałości zmęczeniowych dla całego roku oraz w poszczególnych sezonach
5.3.8. Wyznaczanie temperatury ekwiwalentnej
5.4. Zestawienie obliczonych temperatur ekwiwalentnych dla nawierzchni podatnych i półsztywnych
5.5. Literatura

6. Metody zapobiegania powstawaniu spękań odbitych w nawierzchniach półsztywnych

6.1. Spękania odbite w nawierzchniach drogowych
6.2. Spękania poprzeczne w podbudowach związanych cementem
6.3. Wpływ technologii wykonywania na powstawanie spękań w podbudowach związanych cementem
6.3.1. Właściwości mieszanki związanej cementem
6.3.2. Wilgotność mieszanki w czasie wbudowania
6.3.3. Zagęszczenie warstwy
6.3.4. Temperatura wbudowania mieszanki
6.3.5. Pielegnacja warstwy podbudowy
6.3.6. Wbudowanie warstwy z MMA na warstwie związanej cementem
6.4. Celowa inicjacja spękan w podbudowach związanych cementem
6.4.1. Regularne szczeliny i rowki szczelinowe wykonywane w czasie budowy
7. WSTĘPNE OBLICZENIA KONSTRUKCJI NAWIERZCHNI

7.1. METODYKA OBLICZENIOWA
 7.1.1. Założenia do oceny trwałości konstrukcji nawierzchni
 7.1.2. Kryteria obliczeniowe
 7.1.3. Konstrukcje nawierzchni poddane analizie obliczeniowej

7.2. ZAŁOŻENIA PROJEKTOWE
 7.2.1. Ruch obliczeniowy
 7.2.2. Obciążenie
 7.2.3. Temperatura
 7.2.4. Stałe materiałowe
 7.2.5. Schemat obliczeniowy
 7.2.6. Uwzględnienie faz pracy warstwy podbudowy związanej spoiwem hydraulicznym

7.3. WYNIKI WSTĘPNYCH OBLICZEŃ
 7.3.1. Konstrukcje podatne z podbudową z kruszywa mineralnego
 7.3.2. Konstrukcje podatne tylko z warstw asfaltowych (ang. full depth)
 7.3.3. Konstrukcje półsztywne

7.4. PODSUMOWANIE WYNIKÓW WSTĘPNYCH OBLICZEŃ
 7.4.1. Konstrukcje podatne z podbudową z kruszywa
 7.4.2. Konstrukcje podatne tylko z warstw asfaltowych (Full-Depth)
 7.4.3. Konstrukcje półsztywne z podbudową z mieszanki związanej spoiwem hydraulicznym

7.5. LITERATURA
1. WSTĘP

1.1. Podstawa opracowania

Opracowanie niniejsze wykonano na zlecenie Generalnej Dyrekcji Dróg Krajowych i Autostrad w Warszawie (GDDKiA w Warszawie) w ramach umowy nr 2573/2009 z dnia 10.12.2009 r., wg harmonogramu dla etapu III.

1.2. Cel pracy

Obowiązujący w Polsce „Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych” został zatwierdzony przez Dyrektora GDDP w dniu 24 kwietnia 1997 r. Opracowywany był przez około 2 lata, od 1995 r. Obecnie, po ponad 12 latach stosowania wymaga on weryfikacji i aktualizacji.

Obecny „Katalog” z 1997 roku służy już od ponad 13 lat. W tym czasie nastąpił intensywny rozwój budownictwa drogowego w Polsce. Wraz z wejściem Polski w struktury Unii Europejskiej rozpoczął się gwałtowny rozwój sieci drogowej naszego kraju i nowych technologii, które wcześniej stosowane były w krajach zachodnich. Równocześnie weszły w życie i dalej wchodzą nowe przepisy oparte na normach Europejskich, które zmieniają wymagania w stosunku do wcześniejszych polskich dokumentów. W tym czasie nastąpił także gwałtowny wzrost ruchu drogowego, a w szczególności wzrost ciężarów pojazdów i ciężarówech ich osi oraz wzrost natężenia ruchu, a zwłaszcza ruchu ciężkich pojazdów ciężarowych.

Potrzeba rewizji obecnego katalogu nawierzchni podyktowana jest potrzebą jego dostosowania do nowych realiów w drogownictwie. Niektóre elementy starego „Katalogu” nie przystają do nowych warunków w jakich działa budownictwo drogowe.

Cel całej pracy pod tytułem: „Weryfikacja i aktualizacja „katalogu typowych konstrukcji nawierzchni podatnych i półsztywnych” z 1997 roku” jest następujący:

- Wyeliminowanie niedostatków obecnego Katalogu.
- Dostosowanie Katalogu do obecnych technologii i materiałów w podanym niżej zakresie:
 - Asfalt myśliwskie wg nowych norm (inne niż dotychczas penetracje, lepkości, sztywności),
 - Asfalt modyfikowane wg nowych norm,
 - Mieszanki mineralno-asfaltowe wg nowych norm i warunków technicznych,
- Mieszanki mineralno-asfaltowe nieuwzględnione w starym Katalogu - SMA, betony asfaltowe o wysokim module sztywności, asfalty porowate,

- Mieszanki związane spoiwami hydraulicznymi,

- Wprowadzenie metod zapobiegania powstawaniu spękań odbitych w nawierzchniach półsztywnych (warstwy przeciwspękaniowe, nacinanie warstwy podbudowy, i td),

- Warstwy mrozoochronne wg współczesnych zasad

Dostosowanie Katalogu do zwiększonego obciążenia dróg przez ruch drogowy.

- Wprowadzenie dodatkowej kategorii ruchu powyżej obecnego ruchu KR6 (KR6 zaczyna się od 14,6 mln osi 100 kN na dobę na pas – ruch będzie zdecydowanie większy)

- Uściślenie współczynników przeliczeniowych pojazdów na osie standardowe

Wprowadzenie zmian do obecnych sposobów wzmocniania podłoży drogowych.

- Obecny Katalog w pkt. 5.2 ust. b str. 22c podaje sposoby wzmocniania podłoża identyczne, bez zmiany jak stary Katalog z 1977 roku, czyli sprzed 30 laty, podane w pkt. 6.1 str. 21 starego Katalogu. Technologie są w istotnej części przestarzałe. Jest to słaby punkt tego Katalogu.

- Obecny Katalog nie precyzuje jasno i dokładnie zasad stosowania warstw mrozoochronnych i warstw odsączających. Zostaną przeanalizowane i uściślone wymagania dla tych warstw oraz podane zasady ich stosowania.

- Stary „Katalog” podawał jedno rozwiązanie wzmocnienia podłoża dla danej klasy nośności gruntu. Ograniczało to możliwości projektowe. W nowym „Katalogu” zaproponowane zostaną
zróżnicowane metody wzmacniania podłoży z wykorzystaniem stabilizacji środkami hydraulicznymi i innymi, warstw mrozooszorczych i odsączających oraz wymiany gruntu.

- Uściślenie obliczeń i wymiarowania konstrukcji podanych w starym Katalogu
 - Określenie temperatury ekwiwalentnej dla pór roku i dla całego roku.
 - Przyjęcie modułów kruszyw łamanych z uwzględnieniem ich nieliniowej sprężystości nieliniowej sprężystości.
 - Wykonanie obliczeń dla realnych modułów wzmocnionego podłoża.
 - Wykonanie obliczeń dla cech materiałowych wg współczesnych przepisów innych niż 12 lat temu i nowych badań.
 - Uwzględnienie szczepności międzywarstwowej, dla nawierzchni wielowarstwowych związanych cementem.
 - Uwzględnienie nowych osiągnięć w analizie konstrukcji i w badaniach materiałów.

1.3. Zakres pracy

1.3.1. Zakres całej kilku etapowej pracy badawczej

Praca została podzielona na cztery etapy, a w zakres każdego etapu wchodzą:

Etap I (zakończony w grudniu 2009)

1. Prace wstępne. Przegląd zmian norm i wytycznych dotyczących nawierzchni asfaltowych pod kątem wpływu na katalogowe konstrukcje nawierzchni.

Etap II (zakończony w grudniu 2010)

1. Dostosowanie Katalogu do zastosowania nowych technologii i materiałów. Określenie parametrów projektowych dotyczących nowych technologii i materiałów.

2. Wprowadzenie zmian do obecnych sposobów wzmacniania słabych podłoży drogowych.
3. Dostosowanie Katalogu do zwiększonego obciążenia dróg przez ruch, cz.1

Etap III (realizowany od stycznia do grudnia 2011 roku) - niniejszy raport jest sprawozdaniem z badań w tym etapie

1. Dostosowanie Katalogu do zwiększonego obciążenia dróg przez ruch, cz.2
2. Studia nad nowymi metodami określania trwałości zmęczeniowej. Określenie kryteriów zmęczeniowych do obliczeń
3. Analiza metod zapobiegania powstawaniu spękań odbitych w nawierzchniach półsztywnych (warstwy przeciwsękaniowe, nacinanie warstwy podbudowy, itd)
4. Obliczenia i wymiarowania konstrukcji nawierzchnii podatnych i półsztywnych, cz.1

Etap IV (przewidziany do realizacji w 2012 roku)

1. Obliczenia i wymiarowania konstrukcji nawierzchnii podatnych i półsztywnych, cz.2
2. Redakcja roboczej wersji katalogu
3. Opiniowanie roboczej wersji katalogu i opracowanie ostatecznej wersji

1.3.2. **Zakres III etapu pracy stanowiącego niniejsze opracowanie**

Niniejsze opracowanie składa się z siedmiu rozdziałów. Zawiera ono sprawozdanie z prac badawczych wykonanych w okresie od stycznia do końca listopada 2011 roku. Zakres poszczególnych rozdziałów odpowiada treści harmonogramu zawartemu w programie badawczym – integralnej części umowy. Dodano poza programem dwa rozdziały: rozdział 4 - Porównanie katalogów typowych nawierzchni podatnych i półsztywnych Austrii, Francji, Niemiec, Polski i metody Wielkiej Brytanii i rozdział 5 - Określenie temperatury ekwiwalentnej do projektowania konstrukcji nawierzchni w Polsce zostały opracowane poza harmonogramem, jako materiał niezbędny przy opracowywaniu nowego katalogu.

Rozdział 1 – to wstęp.

Rozdział 2 zatytułowany „Dostosowanie Katalogu do zwiększonego obciążenia dróg przez ruch. Aktualizacja współczynników przeliczeniowych oraz metody wyznaczania ruchu obliczeniowego”, w którego zakres wchodzą: studia literatury dotyczące metod wyznaczania ruchu obliczeniowego i współczynników przeliczeniowych pojazdów stosowanych w różnych krajach; weryfikacja, obróbka i archiwizacja danych z ciągłegoważenia pojazdów w
ruchu. Przedstawiono analizę danych z ciągłego ważenia pojazdów w ruchu obejmującą:

- Wyznaczenie średnich współczynników równoważności f obciążenia pojazdów ze wzoru 4-tej potęgi, metody AASHTO, metody francuskiej, metody Politechniki Gdańskiej
- wyznaczenie struktury rodzajowej ruchu i średnich współczynników równoważności obciążenia pojazdów dla każdego z typów i kategorii pojazdów,
- obliczenia udziału pojazdów przeciżonych i określenie ich wpływu na wartość współczynników równoważności obciążenia pojazdu,
- wyznaczenie sezonowych wałach ruchu i obciążenia pojazdów oraz określenie ich wpływu na wartość średnioczynnych współczynników równoważności obciążenia pojazdu,
- obliczenie średnioczynnych współczynników równoważności obciążenia pojazdu dla kraju,
- wyznaczenie pozostałych czynników mogących mieć wpływ na wartość końcowych współczynników przeliczeniowych,
- podanie współczynników przeliczeniowych dla kraju w oparciu o analizę wielokryterialną.

W rozdziale przedstawiono uaktualnienie klasyfikacji ruchu do projektowania konstrukcji nawierzchni w oparciu o stosowne analizy, omówiono wpływ parametrów technicznych drogi na ruch obliczeniowy. Podjęto dyskusję nad weryfikacją okresu projektowego nawierzchni i przeanalizowano rzeczywiste ciśnienia kontaktowe na styku opony i nawierzchni.

Rozdział 3 zatytułowany „Opracowanie modeli zmęczeniowych do weryfikacji polskiego „Katalogu Typowych Konstrukcji Nawierzchni Podatnych i Półsztywnych” z 1997 roku”, który przedstawia opracowanie kryteriów zmęczeniowych do weryfikacji polskiego "Katalogu typowych konstrukcji nawierzchni podatnych i półsztywnych" z 1997 roku, zwanego dalej w skrócie „Katalogiem (1997)”. Przedstawiono w tym rozdziale:

- Krótki opis kryteriów zmęczeniowych użytych w Katalogu (1997),
- Wybór nowych kryteriów do weryfikacji katalogu,
- Opis kryteriów użytych w nowej mechanistyczno – empirycznej metodzie AASHTO 2004,
- Opis kryteriów francuskich.
- Do dalszego stosowania przy weryfikacji Katalogu (1997) zalecono po analizie następujące kryteria zmęczeniowe:
- Kryteria spękań zmęczeniowych warstw asfaltowych: Instytutu Asfaltowego [10], AASHTO 2004 i francuskie,
- Kryteria podłoża gruntowego (deformacji strukturalnych): Instytutu Asfaltowego i francuskie,

Rozdział 4 zatytułowany „Porównanie katalogów typowych nawierzchni podatnych i półsztywnych Austrii, Francji, Niemiec, Polski i metody Wielkiej Brytanii”, który opracowaniu przedstawiono porównanie katalogowych nawierzchni asfaltowych (podatnych i półsztywnych) Polski z 1997 r., Francji z 1998 r., Niemiec z 2001 r. i Austrii z 2008 r. Do porównania dodano nawierzchnie zaprojektowane według metody Wielkiej Brytanii z 2006 r. Z wielu konstrukcji nawierzchni przedstawionych w katalogach do porównania szczegółowego wybrano cztery typy nawierzchni odpowiadające najczęściej stosowanym w Polsce. Były to nawierzchnie na podbudowach zasadniczych:

(a) z kruszywa łamanego stabilizowanego mechanicznie,
(b) z betonu asfaltowego ułożonego wprost na wzmocnionym podłożu,
(c) z chudego betonu lub podobnych materiałów,
(d) ze stabilizacji cementem lub innym spoiwem hydraulicznym.

Na początku rozdziału podano podstawowe dane o poszczególnych katalogach zagranicznych.

Rozdział 5 zatytułowany „Określenie temperatury ekwiwalentnej do projektowania konstrukcji nawierzchni w Polsce”, w którym przeprowadzono analizy wyznaczenia temperatury ekwiwalentnej tzn. jednej temperatury wyznaczanej dla przyjętego okresu eksploatacji nawierzchni, w której wartość szkody zmęczeniowej jest równa szkodom zmęczeniowym zsumowanym z tego okresu przy uwzględnieniu zmiennych cykli temperatur. Przyjęty okres czasu, dla którego wyznaczana jest temperatura ekwiwalentna może obejmować pojedynczy miesiąc, określony sezon w roku np. okres lata (miesiące: czerwiec - sierpień), jesieni i wiosny (miesiące: marzec - maj oraz wrzesień - listopad) lub zimy (miesiące: grudzień – luty). Przyjęty okres czasu może obejmować również cały rok.
Obliczenia temperatury ekwiwalentnej przeprowadzono uwzględniając zarówno zmienność temperatury w Polsce dla całego roku, jak również nierównomierny rozkład ruchu w poszczególnych okresach w roku. Rocznym rozkład ruchu uwzględniono na podstawie dostępnych danych ze stacji ważenia pojazdów.

Analizie poddano dwa typy konstrukcji nawierzchni: z podbudową z kruszywa łamanego stabilizowanego mechanicznie (nawierzchnia podatna) oraz z podbudową stabilizowaną spojem hydraulicznym (nawierzchnia półsztywna) dla kategorii ruchu od KR1 do KR6 według obecnego katalogu z roku 1997.

W obliczeniach wykorzystano dostępne dane temperaturowe pochodzące ze stacji meteorologicznych, zlokalizowanych na terytorium całej Polski. Na tej podstawie wyznaczano temperaturę warstw asfaltowych wykorzystując metodę Instytutu Asfaltowego.

Rozdział 6 zatytułowany „Metody zapobiegania powstawaniu spękań odbitych w nawierzchniach półsztywnych”, w którym przedstawiono zagadnienia związane z przeciwdziałaniem spękaniami odbitym w nawierzchniach półsztywnych. Wymieniony rodzaj uszkodzeń jest typowy dla nawierzchni, w których w warstwach podbudowy zastosowano materiał związany spojem hydraulicznym, natomiast wyżej leżące warstwy wykonano z mieszanek mineralno asfaltowych. Uważa się, że problem ten jest większy w przypadku nawierzchni, w których podbudowy charakteryzują się znaczną wytrzymałością, np. są wykonane z chudego betonu. Biorąc pod uwagę zmiany, jakie wprowadzają w Polsce wytyczne W5 w stosunku do wcześniejszych przepisów i stosowanej dotychczas u nas praktyki co do wytrzymałości warstw związanych cementem w podbudowach uznano, że zagadnienie zapobiegania spękaniom odbitym w nowych nawierzchniach półsztywnych zasługuje na szersze rozpoznanie.

W rozdziale przedstawiono: charakterystykę spękań odbitych, warunki powstawania spękań poprzecznych w warstwach podbudowy związanych spojem hydraulicznym, wpływ technologii wykonania na powstawanie spękań w warstwach podbudowy związanych spojem hydraulicznym, sposoby minimalizacji spękań odbitych w nawierzchniach półsztywnych i podsumowanie.

Rozdział 7 zatytułowany „Wstępne obliczenia konstrukcji nawierzchni”, w którym przedstawiono metodykę obliczeniową, założenia dotyczące oceny trwałości zmęczeniowej konstrukcji nawierzchni w zależności od zastosowanego kryterium zmęczeniowego. Dodatkowo krótko omówiono metodykę obliczeniową proponowaną przez stowarzyszenie PCA z 2008 r. do obliczania konstrukcji półsztywnych. Przedstawiono konstrukcje nawierzchni przyjęte do obliczeń to jest podział na poszczególne warstwy, jak i stałe i zmienne grubości warstw konstrukcji. Zestawiono założenia projektowe: ruch obliczeniowy, obciążenie od
koła pojazdu, temperatury ekwiwalentne i omówiono stałe materiałowe przyjęte do obliczeń konstrukcji. Przedstawiono wyniki wstępnych obliczeń konstrukcji nawierzchni:

- podatnej z podbudową z:
 - kruszywa mineralnego,
 - tylko z warstw asfaltowych
- na ulepszonym podłożu dla trzech klas nośności: 100, 120 i 80 MPa,
- półsztywnej z podbudową z kruszywa związanego spojem hydraulicznym o wytrzymałości C3/4, C5/6 i C8/10 na ulepszonym podłożu o nośności 100 MPa.

Otrzymane wstępne wyniki obliczeń konstrukcji nawierzchni omówiono i porównano z konstrukcjami katalogowymi z Polski, Austrii, Niemiec i Wielkiej Brytanii.
2. DOSTOSOWANIE KATALOGU DO ZWIĘKSZONEGO OBCIĄŻENIA DRÓG PRZEZ RUCH. AKTUALIZACJA WSPÓŁCZYNNIKÓW PRZELICZENIOWYCH ORAZ METODY WYZNACZANIA RUCHU OBLICZENIOWEGO.

Opracował: mgr inż. Dawid Ryś

2.1. Wprowadzenie

2.1.1. Przedmiot opracowania

Przedmiotem opracowania jest aktualizacja metody wyznaczania ruchu obliczeniowego oraz współczynników przeliczeniowych pojazdów w oparciu o studia literatury, i analizę danych z ciągłego ważenia pojazdów w ruchu. Głównym celem zmian jest dostosowanie katalogu do zwiększonego obciążenia dróg przez ruch.

2.1.2. Zakres opracowania

W zakres niniejszego opracowania wchodzą:

1. Studia literatury dotyczące metod wyznaczania ruchu obliczeniowego i współczynników przeliczeniowych pojazdów stosowanych w różnych krajach;
2. Weryfikacja, obróbka i archiwizacja danych z ciągłego ważenia pojazdów w ruchu;
3. Analiza danych z ciągłego ważenia pojazdów w ruchu obejmująca:
 a. wyznaczenie średnich współczynników równoważności obciążenia pojazdów ze wzoru 4-tej potęgi, metody AASHTOO, metody francuskiej, metody Politechniki Gdańskiej opartej o kryteria zmęczeniowe nawierzchni podatnych i półsztywnych
 b. wyznaczenie struktury rodzajowej ruchu i średnich współczynników równoważności obciążenia pojazdów dla każdego z typów i kategorii pojazdów,
 c. obliczenia udziału pojazdów przeciążonych i określenie ich wpływu na wartość współczynników równoważności obciążenia pojazdu,
 d. wyznaczenie sezonowych wahań ruchu i obciążenia pojazdów oraz określenie ich wpływu na wartość średniorocznych współczynników równoważności obciążenia pojazdu,
 e. obliczenie średniorocznych współczynników równoważności obciążenia pojazdu dla kraju,
f. wyznaczenie pozostałych czynników mogących mieć wpływ na wartość końcowych współczynników przeliczeniowych,
g. podanie propozycji współczynników przeliczeniowych dla kraju w oparciu o analizę wielokryterialną;

4. Uaktualnienie klasyfikacji ruchu do projektowania konstrukcji nawierzchni w oparciu o stosowne analizy i podanie propozycji nowej klasyfikacji ruchu;

5. Wpływ parametrów technicznych drogi na ruch obliczeniowy;

6. Weryfikacja okresu projektowego nawierzchni;

7. Analiza i wyznaczenie ciśnienia kontaktowego na styku opony i nawierzchni.

2.2. Wyznaczenie średnich współczynników równoważności osi dla poszczególnych punktów pomiarowych

2.2.1. Dane wejściowe

Współczynniki równoważności obciążenia osi wyznaczono w oparciu o dane z ważenia pojazdów w ruchu (WIM z ang. „weight in motion”). Stacje WIM są złożonymi urządzeniami umożliwiającymi pomiar nacisków osi, odległości między nimi, prędkości pojazdu oraz klasyfikującymi pojazd. Dane odczytywane z sensorów są w pierwszej kolejności przetwarzane przez komputer, w celu zminimalizowania błędu pomiaru, wywołanego np. oddziaływaniem dynamicznym pojazdu. Dodatkowo każdy pojazd jest skanowany w celu zaklasyfikowanie go do odpowiedniej grupy. Następnie dane zapisywane są w formie plików tekstowych i archiwizowane. Należy podkreślić główny atut pomiarów pojazdów na stacjach WIM, którym jest ciągłość pomiaru - dane obejmują pełen zakres pojazdów poruszających się po drodze.

Rysunek 2.2.1. Schemat rozmieszczenia urządzeń i przetwarzania danych na stacji WIM.
Rys. 2.2.2. Stacja WIM w Woli Dębińskiej w ciągu DK4 (mat. firmy Neurosoft) Lokalizację punktów pomiarowych uwzględnionych w opracowaniu przedstawiono na rys. 2.2.3. W analizie uwzględniono łącznie 5 stacji obsługiwanych przez firmy Neurosoft i Cat-traffic:

- Grodzic na DK46, woj. Opolskie
- Emilia na A2, woj. Łódzkie
- Byczyna na DK11, woj. Opolskie
- Wola Dębińska na DK4, woj. Małopolskie
- Włocławek na DK1, woj. Kujawsko-Pomorskie

Rysunek 2.2.3. Lokalizacja punktów pomiarowych uwzględnionych w analizie.
2.2.2. Struktura ruchu na punktach pomiarowych

Pierwszym etapem procedury wyznaczania średnich współczynników równoważności obciążenia osi jest analiza struktury ruchu. Pojazdy w pierwszej kolejności podzielono według schematu stosowanego przy generalnych pomiarach ruchu na następujące kategorie:

- O - samochody osobowe
- D - samochody dostawcze
- C - samochody ciężarowe bez przyczep
- C+P - samochody ciężarowe z przyczepami oraz ciągniki siodłowe z naczepami
- A - autobusy

Diagramy ze średnią strukturą rodzajową pojazdów z całego dostępnego okresu pomiaru na poszczególnych stacjach zamieszczono na rys. 2.2.4 do 2.2.8. Do dalszych analiz odrzucono wszystkie pojazdy, których ciężar nie przekraczał 3,5 tony albo które zostały sklasyfikowane do jednej z grup: O, D, M, I; gdyż ich oddziaływanie na konstrukcję nawierzchni drogowej jest pomijalnie małe.

![Struktura ruchu - Stacja Wola Dębińska - DK4](image)

Rysunek 2.2.4. Struktura ruchu na stacji w Woli Dębińskiej DK 4
Tablica 2.2.1 Struktura ruchu na stacjach ważenia pojazdów w ruchu

<table>
<thead>
<tr>
<th>Stacja</th>
<th>DK 4</th>
<th>DK46</th>
<th>DK1</th>
<th>DK11</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>osobowe</td>
<td>66,0%</td>
<td>57,0%</td>
<td>68,0%</td>
<td>62,6%</td>
<td>57,4%</td>
</tr>
<tr>
<td>dostawcze</td>
<td>11,0%</td>
<td>11,0%</td>
<td>10,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ciężarowe bez przyczep</td>
<td>8,0%</td>
<td>4,0%</td>
<td>4,0%</td>
<td>7,4%</td>
<td>5,2%</td>
</tr>
<tr>
<td>ciężarowe z przyczepami</td>
<td>14,0%</td>
<td>27,0%</td>
<td>17,0%</td>
<td>29,4%</td>
<td>36,1%</td>
</tr>
<tr>
<td>autobusy</td>
<td>1,0%</td>
<td>1,0%</td>
<td>1,0%</td>
<td>0,6%</td>
<td>1,2%</td>
</tr>
</tbody>
</table>
W dalszej części raportu pojazdy kategorii C, C+P i A nazywane będą pojazdami ruchu ciężkiego. W celu dalszych analiz wprowadzono dodatkowy podział pojazdów z uwagi na konfigurację osi w pojeździe (podział z uwagi na typ pojazdu). Metoda opisywania typu pojazdów polega na opisaniu liczby i odległości między osiami w pojeździe. Za oś pojedynczą uznano taką, której odległość do sąsiadującej osi wynosi ponad 1,8 metra. Osie, między którymi dystans nie przekracza 1,8 metra sklasyfikowano jako osie wielokrotne (podwójne lub potrójne). Każdemu pojazdowi przypisany został kod typu, powstały z połączenia cyfr, opisujących rodzaj kolejnej osi w pojeździe. Cyfry oznaczają odpowiednio:

Rysunek 2.2.7. Struktura ruchu na stacji w Byczynie DK 11

Rysunek 2.2.8. Struktura ruchu na stacji w Emiliii A2
1. oś pojedyncza,
2. oś podwójna,
3. oś potrójna,

2.2.9. Podział pojazdów ruchu ciężkiego zastosowany w raporcie wraz z ilustracjami przykładowych pojazdów.

2.2.3. Weryfikacja błędnych rekordów pomiarowych

Ponieważ zdarza się, że pojazdy ciężarowe mogą zostać nieprawidłowo zakwalifikowane, lub też pomiar ciężaru osi lub odległości między osiami obarczony jest grubym błędem, dane te należy odrzucić. Podstawą do rozpoznania błędnych rekordów była analiza parametrów technicznych pojazdów poruszających się po polskich drogach podawana przez producentów pojazdów, oraz określonych przez prawo [9][10]. Z dalszych analiz wykluczono rekordy dla których:

- konfiguracja osi jest inna niż wymienione na rys. 2.2.9,
- pierwsza oś jest cięższa niż 150 kN,
- druga oś (napędowa) jest cięższa niż 200kN,
- trzecia oś lub kolejne są cięższe niż 180kN,
- długość pojazdu przekracza 20m

Liczba pomiarów obarczonych grubym błędem lub nie występujących w założonej klasyfikacji (odrzuconych z dalszej analizy) dla każdej ze stacji nie przekracza 2% względem liczby wszystkich pomiarów i stanowi:

- 1,38% sumy pojazdów na DK 4,
- 1,81% na DK46,
2.3. Wyznaczenie średnich współczynników równoważności obciążenia pojazdów ciężarowych

Pod pojęciem współczynników równoważności obciążenia pojazdów ciężarowych rozumie się stosunek niszczącego oddziaływania pojazdu na nawierzchnię wywołanego pojedynczym przejazdem, do niszczącego oddziaływania wywołanego przejazdem jednej osi porównawczej. Współczynniki równoważności obciążenia pojazdów dla nawierzchni podatnych wyznaczono wg następujących metod i założeń:

1. wzór 4-tej potęgi,
2. metoda Francuska dla nawierzchni podatnych
3. metoda AASHTO dla konstrukcji wg KTKNPiP z 1997 typ A i ruchu KR1, KR3 oraz KR6,
4. metoda funkcji matematycznych (PG) w oparciu o kryterium spękań zmęczeniowych nawierzchni asfaltowych dla ciśnień kontaktowych opony 850kPa oraz 1000kPa, konstrukcja wg KTKNPiP z 1997 typ A dla ruchu KR1, KR3 oraz KR6,
5. metoda funkcji matematycznych (PG) w oparciu o kryterium deformacji strukturalnych podłoża gruntowego przy ciśnieniach kontaktowych opony 650kPa, 850kPa oraz 1000kPa, konstrukcja wg KTKNPiP z 1997 typ A dla ruchu KR1, KR3 oraz KR6;

natomiast dla nawierzchni półsztywnych wyznaczono wg:

1. metody francuskiej dla nawierzchni półsztywnych,
2. metody funkcji matematycznych (PG) w oparciu o kryterium spękań zmęczeniowych podbudowy związaną cementem dla ciśnień kontaktowych opony 650kPa, 850kPa oraz 1000kPa, i konstrukcji wg KTKNPiP z 1997 typ F dla ruchu KR1, KR3 oraz KR6.

Procedura obliczania średnich współczynników równoważności obciążenia pojazdów przeprowadzona została wg następującej kolejności:

1. Obliczenie współczynników równoważności obciążenia poszczególnych osi w pojeździe, w zależności od typu osi (pojedyncza, podwójna, potrójna),
2. Obliczenie współczynników równoważności obciążenia pojazdów w zależności od konfiguracji kolejnych osi w pojeździe,
1. Obliczenie średnich arytmetycznych dla współczynników równoważności obciążenia pojazdów dla poszczególnych typów i kategorii pojazdów, w zadanych przedziałach czasowych (dzień, miesiąc, rok, cały dostępny okres pomiaru).

2.3.1. Współczynniki równoważności obciążenia osi

2.3.1.1. Metoda 4-tej potęgi

Najpowszechniejszą metodą wyznaczania ruchu obliczeniowego jest wór 4-tej potęgi, toteż metoda została wybrana jako wiodąca. Wyniki otrzymane z innych metod będą porównywane z wynikami otrzymanymi dla wzoru 4-tej potęgi. W metodzie tej osie rzeczywiste są przeliczane na osie standardowe z następującym wzorem:

\[F^p = \left(\frac{Q}{Q_0} \right)^4 \]

w którym:
- \(F^p \) - współczynnik równoważności obciążenia osi wyznaczony według metody 4-tej potęgi,
- \(Q \) – ciężar osi w kN dla osi pojedynczej, dla osi podwójnej suma ciężarów dwóch osi składowych, dla osi potrójnej suma ciężarów trzech osi składowych,
- \(Q_0 \) – ciężar osi porównawczej, dla osi pojedynczej \(Q_0 = 100 \) kN, dla osi podwójnej \(Q_0 = 184 \) kN, dla osi potrójnej \(Q_0 = 263 \) kN.

Wartości 184 kN i 263 kN przyjęto według pracy [1], w której to zostały wyznaczone zgodnie z metodą AASHTO 1993 dla liczby strukturalnej SN= 5,15 (odpowiednik konstrukcji nawierzchni dla ruchu KR4) i terminalnego wskaźnika PSI na końcu okresu eksploatacji \(p_t = 2,5 \).

2.3.1.2. Metoda AASHTO

Metoda powstała jako wynik największych jak dotąd badań konstrukcji nawierzchni przeprowadzonych w USA na przełomie lat 1950-60. Do celów niniejszej analizy wzory na obliczanie współczynnika równoważności obciążenia osi \(F \) (ang. Equivalent Axle Load Factor EALF) podane w [2], zostały przekształcone przez autora opracowania do formy umożliwiającej obliczenia dla osi standardowej 100kN:

\[F^A = \frac{W_{t22.5}}{W_{tx}} \]

\[\log \left(\frac{W_{t22.5}}{W_{tx}} \right) \]

\[\log \left(\frac{W_t}{W_{22.5}} \right) = 4.79 \times \log(18 + 1) - 4.79 \times \log(L_3 + L_2) + 4.33 \times \log(L_1) + \frac{G_t}{\beta x} - \frac{G_t}{\beta_{18}} \]
G_t = \log\left(\frac{4.2 - p_t}{4.2 - 1.5}\right) \quad (2.3.5)

\beta_x = 0.40 + \frac{0.081 L_x + L_2^{3.23}}{(SN + 1)^{5.19} L_2^{3.23}} \quad (2.3.6)

gdzie:

F^A – współczynnik równoważności obciążenia osi wyznaczony według metody AASHTO
W_{tx} – liczba przyłożonych obciążeń osi-x w czasie t,
W_{22.5} – liczba przyłożonych obciążeń osi standardowych 22,5 kip (22,5 kip = 100 kN),
L_x – obciążenie na oś pojedynczą, na zestaw osi podwójnych i potrójnych (kip),
L_2 – kod osi: 1 dla osi pojedynczej, 2 dla osi podwójnej, 3 dla osi potrójnej;
SN - liczba strukturalna, będąca funkcją grubości i modułów sprężystości każdej warstwy konstrukcji nawierzchni, oraz warunków gruntowo-wodnych w podłożu, przyjęto SN równe 2,51 dla KR1, 4,27 dla KR3 i 6,54 dla KR6,
p_t – wskaźnik PSI (Present Serviceability Indem) na końcu okresu obliczeniowego nawierzchni (tzw. „wskaźnik terminalny przydatności eksploatacyjnej”), przyjęto wartości pt 2,0 dla KR1, 2,5 dla KR3 i KR6
G_t – funkcja zależna od p_t,
\beta_x – funkcja zmiennych projektowych i zmiennych obciążenia, która wpływa na kształt zależności przydatności eksploatacyjnej rozpatrywanej nawierzchni p_t względem ilości obciążeń osi W_{tx},
\beta_{18} – jest wartością \beta_x, kiedy L_x jest równe 18 i L_2 jest równe 1.

2.3.1.3. Metoda francuska

Według metody podanej w [3] współczynnik równoważności obciążenia osi wyznacza się z następującego wzoru:

\[F^{FR} = A = K \left(\frac{P_c}{P_0}\right)^{\alpha} \] \quad (2.3.7)

gdzie:

F^{FR} (org. A) - współczynnik równoważności obciążenia kolejnych osi w pojeździe obliczony według metody francuskiej (org. agresywność osi fr. Agressivité d’un essieu)
P_c - obciążenie rzeczywiste jednej osi, w przypadku osi podwójnych i potrójnych do wzoru podstawia się obciążenia każdej z osi składowych,
P_0 - obciążenie osi standardowej równie 100 kN,
K - współczynnik zależny od układu osi w pojeździe (tablica 1),
α - współczynnik zależny od typu konstrukcji nawierzchni (tablica 1),

Obliczenia wykonano dla dwóch wariantów: dla nowych nawierzchni podatnych oraz dla nowych nawierzchni półsztywnych.

<table>
<thead>
<tr>
<th>Tablica 2.3.1. Współczynniki K i α dobierane w Metodzie Francuskiej [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość współczynnika K</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Osie pojedyncze</td>
</tr>
<tr>
<td>Nawierzchnie podatne</td>
</tr>
<tr>
<td>nowe</td>
</tr>
<tr>
<td>remontowane</td>
</tr>
<tr>
<td>Nawierzchnie półsztywne</td>
</tr>
<tr>
<td>nowe</td>
</tr>
<tr>
<td>remontowane</td>
</tr>
<tr>
<td>Nawierzchnie sztywne</td>
</tr>
<tr>
<td>betonowe</td>
</tr>
<tr>
<td>o ciągłym zbrojeniu</td>
</tr>
</tbody>
</table>

2.3.1.4. Metoda Politechniki Gdańskiej

Metoda wyprowadzona jest w oparciu o mechanistyczne metody projektowania nawierzchni. Podstawą do jej opracowania była analiza kryteriów zmęczeniowych warstw nawierzchni podatnych i półsztywnych, oraz podłoży gruntowych. Zaletą metody jest uwzględnienie ciśnienia kontaktowego na styku opony i nawierzchni, grubości konstrukcji nawierzchni, i konfiguracji kół w osi (koła pojedyncze i podwójne). Ogólne wzory stosowane przy obliczaniu współczynnika równoważności przyjmują postać:

dla warstw asfaltowych i podłoża gruntowego:

\[
\log(F_{PG}) = a \cdot \log^2 \left(\frac{Q_x}{Q_0} \right) + b \cdot \log \left(\frac{Q_x}{Q_0} \right) + c
\]

(2.3.8)

dla warstw stabilizowanych cementem:

\[
\log(F_{PG}) = a \cdot \log^3 \left(\frac{Q_x}{Q_0} \right) + b \cdot \log^2 \left(\frac{Q_x}{Q_0} \right) + c \cdot \log \left(\frac{Q_x}{Q_0} \right) + d
\]

(2.3.9)

gdzie:

\(F_{PG} \) - współczynniki równoważności obciążenia kolejnych osi w pojeździe, obliczony według metody PG.

a, b, c, d - współczynniki liczbowe zależne od typu i grubości konstrukcji, oraz od ciśnienia kontaktowego nawierzchni. Wartości liczbowe współczynników przedstawiono w załączniku nr 1.

Q_x - obciążenie rzeczywiste osi, w przypadku osi podwójnych i potrójnych jest to suma obciążenia dwóch, lub trzech osi składowych.

Q_0 - obciążenie porównawcze osi, dla osi pojedynczej Q_0 = 100, dla osi podwójnej Q_0 = 184kN, dla osi potrójnej Q_0 = 263kPa.
W metodzie PG jako oś porównawczą przyjęto oś o obciążeniu 100kN, ciśnieniu kontaktowym 650kPa i kołach pojedynczych. Wpływ zwiększenia ciśnienia z 650kPa na 850 kPa lub na 1000kPa, oraz wpływ konfiguracji kół (pojedyncze lub bliźniacze) na wielkość współczynników równoważności obciążenia przedstawiono w tablicy 2.3.2. Dokładny opis metody oraz sposób jej wyznaczenia przedstawiono w raporcie z badań dla GDDKiA [5].

Tablica 2.3.2. Porównanie współczynników równoważności obciążenia osi 100kN wyznaczonych wg metody PG dla układów kół w osi pojedynczych lub bliźniaczych, przy ciśnieniach kontaktowych 650 kPa, 850 kPa lub 1000 kPa

<table>
<thead>
<tr>
<th>Metoda PG ciśnienie kontaktowe 650kPa</th>
<th>Metoda PG ciśnienie kontaktowe 850kPa</th>
<th>Metoda PG ciśnienie kontaktowe 1000kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Układ kół</td>
<td>kryterium asfaltowe</td>
<td>kryterium gruntowe</td>
</tr>
<tr>
<td>pojedynczy</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>bliźniaczy</td>
<td>0,68</td>
<td>0,70</td>
</tr>
</tbody>
</table>

Do obliczenia współczynników równoważności obciążenia pojazdów metodą PG przyjęto następujący układ osi w pojeździe:

1. Osie sterowne składają się z pary kół pojedynczych
2. Osie napędowe składają się z pary kół bliźniaczych
3. Wszystkie pozostałe osie w pojeździe są osiami składającymi się z pary kół pojedynczych

2.3.1.5. Obliczenie współczynników równoważności obciążenia pojazdów

Dla każdego pojazdu występującego w potoku ruchu, z osobna wyznaczono współczynnik równoważności obciążenia pojazdu, jako sumę współczynników równoważności obciążenia każdej z osi tego pojazdu, z uwzględnieniem ich typu (oś pojedyncza, podwójna i potrójna):

\[F_v = \sum_{j=1}^{n} F_j \] (2.3.10)
w którym:
F_v – współczynnik równoważności obciążenia pojedynczego pojazdu, czyli liczba przejazdów osi standardowej 100 kN równoważna jednemu przejazdowi danego pojazdu,
F_j – współczynniki równoważności obciążenia kolejnych osi w pojazdzie (obliczony w zależności od metody, wg wzorów 2.3.1 - 2.3.9),
n – liczba osi w pojazdzie.

2.3.2. Obliczenie średnich współczynników równoważności obciążenia pojazdów

Wykorzystując rozpoznanie pojazdów obliczono współczynnik równoważności obciążenia pojazdów każdego z typów, jako średnią arytmetyczną współczynników pojedynczych pojazdów w rozpatrywanym czasie:

$$F_t = \frac{1}{n_t} \sum_{i=1}^{n_t} F_{t,i}$$

(2.3.11)

w którym:
F_t – średni współczynnik równoważności obciążenia pojazdów kategorii t,
i – kolejne pojazdy w grupie pojazdów kategorii t,
n_t – liczba pojazdów kategorii t, jaka przejechała w rozpatrywanym przedziale czasu.

Średnie współczynniki równoważności obciążenia poszczególnych kategorii pojazdów dla każdej z stacji pomiarowych w całym dostępym okresie pomiaru przedstawiono w tablicach 2.3.3 - 2.3.15. Okresy pomiarów dla których podano wartości średniej przedstawiono w tablicy 2.4.1. Wpływ różnych okresów pomiaru szerzej omówiono w punkcie 2.4.

Średnie arytmetyczne współczynników równoważności obciążenia pojazdów obliczone dla 5 punktów pomiarowych potraktowano jako zmienne losowe charakteryzujące ruch ciężki w danym punkcie pomiarowym. Dla przyjętych zmiennych przeprowadzono test statystyczny Shapiro-Wilka w celu potwierdzenia lub odrzucenia prawdziwości hipotezy o normalności rozkładu średnich współczynników równoważności obciążenia pojazdów. Test przeprowadzono dla współczynników wyznaczonych każdą z metod (4-tej potęgi, AASHTO, francuskiej i Politechniki Gdańskiej) i potwierdzono tym samym prawdziwość hipotezy o normalności rozkładu dla każdej z metod. Bazując na prawdziwości hipotezy o normalności rozkładu współczynników równoważności obciążenia pojazdów przyjęto, że dla wartości granicznej, równej średnemu współczynnikowi z 5 punktów pomiarowych F_{sr} powiększonemu o 2-krotność odchylenia standardowego σ, 98% wyników pomiarów byłaby niższa od wartości granicznej.
Tablica 2.3.3. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą 4-tej potęgi

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>C</td>
<td>0,244</td>
<td>0,237</td>
<td>0,263</td>
<td>0,232</td>
</tr>
<tr>
<td>C+P</td>
<td>0,955</td>
<td>1,040</td>
<td>0,623</td>
<td>0,881</td>
</tr>
<tr>
<td>A</td>
<td>0,728</td>
<td>0,641</td>
<td>0,643</td>
<td>0,905</td>
</tr>
</tbody>
</table>

Tablica 2.3.4. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą AASHTO dla konstrukcji podatnej ruchu KR1

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>C</td>
<td>0,234</td>
<td>0,229</td>
<td>0,249</td>
<td>0,213</td>
</tr>
<tr>
<td>C+P</td>
<td>0,919</td>
<td>1,012</td>
<td>0,587</td>
<td>0,907</td>
</tr>
<tr>
<td>A</td>
<td>0,716</td>
<td>0,646</td>
<td>0,631</td>
<td>0,914</td>
</tr>
</tbody>
</table>

Tablica 2.3.5. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą AASHTO dla konstrukcji podatnej ruchu KR3

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>C</td>
<td>0,254</td>
<td>0,246</td>
<td>0,275</td>
<td>0,226</td>
</tr>
<tr>
<td>C+P</td>
<td>0,900</td>
<td>1,073</td>
<td>0,655</td>
<td>0,846</td>
</tr>
<tr>
<td>A</td>
<td>0,742</td>
<td>0,643</td>
<td>0,655</td>
<td>0,902</td>
</tr>
</tbody>
</table>

Tablica 2.3.6. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą AASHTO dla konstrukcji podatnej ruchu KR6

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>C</td>
<td>0,227</td>
<td>0,222</td>
<td>0,245</td>
<td>0,228</td>
</tr>
<tr>
<td>C+P</td>
<td>0,909</td>
<td>0,994</td>
<td>0,582</td>
<td>0,876</td>
</tr>
<tr>
<td>A</td>
<td>0,707</td>
<td>0,628</td>
<td>0,625</td>
<td>0,895</td>
</tr>
</tbody>
</table>

Tablica 2.3.7 Średnie współczynniki równoważności obciążenia pojazdu warstw bitumicznych wg Metody Francuskiej.

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>F_{sr}</th>
<th>σ</th>
<th>$F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>C</td>
<td>0,219</td>
<td>0,218</td>
<td>0,225</td>
<td>0,218</td>
</tr>
<tr>
<td>C+P</td>
<td>0,990</td>
<td>1,090</td>
<td>0,560</td>
<td>0,837</td>
</tr>
<tr>
<td>A</td>
<td>0,697</td>
<td>0,659</td>
<td>0,614</td>
<td>0,886</td>
</tr>
</tbody>
</table>
Tablica 2.3.8. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą PG przy ciśnieniu kontaktowym 650 kPa dla konstrukcji podatnej ruchu KR1

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>C</td>
<td>0,371</td>
<td>0,343</td>
<td>0,395</td>
<td>0,329</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C+P</td>
<td>1,208</td>
<td>1,259</td>
<td>0,966</td>
<td>1,142</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0,722</td>
<td>0,588</td>
<td>0,664</td>
<td>0,828</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,151</td>
<td>0,139</td>
<td>0,156</td>
<td>0,139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C+P</td>
<td>0,679</td>
<td>0,722</td>
<td>0,441</td>
<td>0,627</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0,378</td>
<td>0,341</td>
<td>0,342</td>
<td>0,471</td>
</tr>
</tbody>
</table>

Tablica 2.3.9. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą PG przy ciśnieniu kontaktowym 650 kPa dla konstrukcji podatnej ruchu KR3

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>C</td>
<td>0,298</td>
<td>0,278</td>
<td>0,320</td>
<td>0,267</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C+P</td>
<td>1,058</td>
<td>1,111</td>
<td>0,797</td>
<td>0,991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0,653</td>
<td>0,540</td>
<td>0,593</td>
<td>0,766</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,158</td>
<td>0,150</td>
<td>0,166</td>
<td>0,149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C+P</td>
<td>0,672</td>
<td>0,725</td>
<td>0,428</td>
<td>0,618</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0,447</td>
<td>0,402</td>
<td>0,398</td>
<td>0,560</td>
</tr>
</tbody>
</table>

Tablica 2.3.10. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą PG przy ciśnieniu kontaktowym 650 kPa dla konstrukcji podatnej ruchu KR6

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>C</td>
<td>0,282</td>
<td>0,267</td>
<td>0,306</td>
<td>0,257</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C+P</td>
<td>1,024</td>
<td>1,086</td>
<td>0,741</td>
<td>0,955</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0,685</td>
<td>0,571</td>
<td>0,614</td>
<td>0,814</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,188</td>
<td>0,181</td>
<td>0,199</td>
<td>0,180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C+P</td>
<td>0,784</td>
<td>0,852</td>
<td>0,496</td>
<td>0,721</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0,556</td>
<td>0,500</td>
<td>0,492</td>
<td>0,699</td>
</tr>
</tbody>
</table>
Tablica 2.3.11. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą PG przy ciśnieniu kontaktowym 850 kPa dla konstrukcji podatnej ruchu KR1

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>kryterium asfaltowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,568</td>
<td>0,526</td>
<td>0,605</td>
<td>0,503</td>
</tr>
<tr>
<td>C+P</td>
<td>1,851</td>
<td>1,929</td>
<td>1,480</td>
<td>1,749</td>
</tr>
<tr>
<td>A</td>
<td>1,106</td>
<td>0,901</td>
<td>1,017</td>
<td>1,268</td>
</tr>
<tr>
<td>kryterium gruntowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,162</td>
<td>0,150</td>
<td>0,168</td>
<td>0,149</td>
</tr>
<tr>
<td>C+P</td>
<td>0,732</td>
<td>0,778</td>
<td>0,475</td>
<td>0,675</td>
</tr>
<tr>
<td>A</td>
<td>0,408</td>
<td>0,367</td>
<td>0,369</td>
<td>0,508</td>
</tr>
</tbody>
</table>

Tablica 2.3.12. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą PG przy ciśnieniu kontaktowym 850 kPa dla konstrukcji podatnej ruchu KR3

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>kryterium asfaltowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,391</td>
<td>0,364</td>
<td>0,419</td>
<td>0,350</td>
</tr>
<tr>
<td>C+P</td>
<td>1,386</td>
<td>1,456</td>
<td>1,044</td>
<td>1,299</td>
</tr>
<tr>
<td>A</td>
<td>0,855</td>
<td>0,708</td>
<td>0,776</td>
<td>1,003</td>
</tr>
<tr>
<td>kryterium gruntowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,184</td>
<td>0,175</td>
<td>0,193</td>
<td>0,174</td>
</tr>
<tr>
<td>C+P</td>
<td>0,783</td>
<td>0,846</td>
<td>0,499</td>
<td>0,721</td>
</tr>
<tr>
<td>A</td>
<td>0,522</td>
<td>0,468</td>
<td>0,464</td>
<td>0,654</td>
</tr>
</tbody>
</table>

Tablica 2.3.13. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą PG przy ciśnieniu kontaktowym 850 kPa dla konstrukcji podatnej ruchu KR6

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standartowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>kryterium asfaltowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,321</td>
<td>0,303</td>
<td>0,348</td>
<td>0,291</td>
</tr>
<tr>
<td>C+P</td>
<td>1,163</td>
<td>1,233</td>
<td>0,842</td>
<td>1,085</td>
</tr>
<tr>
<td>A</td>
<td>0,778</td>
<td>0,649</td>
<td>0,697</td>
<td>0,924</td>
</tr>
<tr>
<td>kryterium gruntowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,197</td>
<td>0,189</td>
<td>0,208</td>
<td>0,188</td>
</tr>
<tr>
<td>C+P</td>
<td>0,820</td>
<td>0,892</td>
<td>0,518</td>
<td>0,755</td>
</tr>
<tr>
<td>A</td>
<td>0,581</td>
<td>0,523</td>
<td>0,515</td>
<td>0,731</td>
</tr>
</tbody>
</table>
Tablica 2.3.14 Średnie współczynniki równoważności obciążenia pojazdu warstw związanych cementem (nawierzchnie półsztywne) wg Metody Francuskiej.

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>Odchylenie standardowe σ</th>
<th>Wartość graniczna $F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>DK11</td>
<td>DK4</td>
<td>DK1</td>
</tr>
<tr>
<td>C</td>
<td>3,451</td>
<td>2,750</td>
<td>0,534</td>
<td>3,551</td>
</tr>
<tr>
<td>C+P</td>
<td>7,088</td>
<td>5,651</td>
<td>1,159</td>
<td>7,501</td>
</tr>
<tr>
<td>A</td>
<td>7,089</td>
<td>8,377</td>
<td>1,422</td>
<td>6,941</td>
</tr>
</tbody>
</table>

Tablica 2.3.15. Średnie współczynniki równoważności obciążenia pojazdów obliczone metodą PG przy ciśnieniu kontaktowym 650 kPa dla warstw związanych cementem nawierzchni półsztywnych, pracujących w pierwszej fazie.

<table>
<thead>
<tr>
<th>Grubość konstrukcji nawierzchni dla ruchu</th>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Średnia F_{sr}</th>
<th>σ</th>
<th>$F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>DK11</td>
<td>DK4</td>
<td>DK1</td>
<td></td>
</tr>
<tr>
<td>KR1</td>
<td>C</td>
<td>308,878</td>
<td>6,386</td>
<td>0,057</td>
<td>162,167</td>
</tr>
<tr>
<td></td>
<td>C+P</td>
<td>33,074</td>
<td>847,317</td>
<td>0,202</td>
<td>29,742</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>9,551</td>
<td>15,201</td>
<td>0,045</td>
<td>9,433</td>
</tr>
<tr>
<td>KR3</td>
<td>C</td>
<td>0,687</td>
<td>0,020</td>
<td>0,007</td>
<td>0,235</td>
</tr>
<tr>
<td></td>
<td>C+P</td>
<td>0,295</td>
<td>0,478</td>
<td>0,046</td>
<td>0,199</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>0,108</td>
<td>0,176</td>
<td>0,026</td>
<td>0,113</td>
</tr>
<tr>
<td>KR6</td>
<td>C</td>
<td>0,094</td>
<td>0,045</td>
<td>0,040</td>
<td>0,063</td>
</tr>
<tr>
<td></td>
<td>C+P</td>
<td>0,241</td>
<td>0,203</td>
<td>0,158</td>
<td>0,191</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>0,251</td>
<td>0,297</td>
<td>0,114</td>
<td>0,235</td>
</tr>
</tbody>
</table>

Na podstawie tablic 2.3.3. - 2.3.15 można stwierdzić:

1. Średnie współczynniki równoważności obliczone według metod AASHTO i wzoru 4-tej potęgi mają bardzo zbliżone wartości a różnica między nimi wynosi ok. 3%.
3. Współczynniki obliczone według metody Francuskiej względem współczynników wyznaczonych według metody 4-tej potęgi mają niższą o 17% dla kategorii pojazdów C, oraz o 7% wyższą dla pojazdów kategorii C+P. Różnice te wynikają przede wszystkim z wykładnika potęgi równego 5, przyjmowanego w metodzie Francuskiej.
4. W metodzie funkcji matematycznych (PG) rozbieżności w wynikach w porównaniu do pozostałych metod są zdecydowanie większe i mocniej
zróżnicowane w zależności od kryterium (asfaltowe lub gruntowe) oraz od grubości konstrukcji.

5. Kryterium bardziej niekorzystnym (dającym wyższe współczynniki równoważności obciażenia pojazdu) jest kryterium spękań zmęczeniowych warstw asfaltowych.

6. Niszczące oddziaływanie ruchu ciężkiego na warstwy asfaltowe jest tym większe, im mniejsza jest grubość nawierzchni.

7. Różnice w średnich współczynnikach wyznaczonych z metody AASHTO oraz z metody PG opartej o kryteria zmęczeniowe mogą wynikać z różnego poziomu uszkodzeń nawierzchni na końcu okresu eksploatacji. W metodzie AASHTO poziom uszkodzeń na końcu okresu eksploatacji wyraża się wskaźnikiem PSI, natomiast w metodach PG kryterium wyczerpania nośności nawierzchni jest pojawienie się spękań zmęczeniowych na 20% powierzchni jezdni wzdłuż śladów kół lub deformacje strukturalne podłoża równe 12,5mm.

8. W metodach AASHTO oraz francuskiej oś porównawcza definiowana jest jako oś o kołach bliźniaczych i ciśnieniu kontaktowym 650kPa (662kPa met Francuska), natomiast w metodzie PG oś porównawcza składa się z pary kół pojedynczych o ciśnieniu kontaktowym 650kPa co wpływa na różnicę w wyznaczonych średnich współczynnikach równoważności obciążenia pojazdów według tych metod.

9. Wysokie wartości współczynników wyznaczonych według metody funkcji matematycznych przedstawione w tablicach 2.3.10-2.3.12 wynikają z większego ciśnienia kontaktowego. Osią porównawczą w metodzie PG jest oś o kołach pojedynczych i ciśnieniu kontaktowym 650kPa, natomiast współczynniki wyznaczono dla zwiększonego ciśnienia kontaktowego równego 850kPa. Tablice uwidaczniają jak istotnym czynnikiem jest ciśnienie kontaktowe.

10. Współczynnik równoważności obciążenia pojazdu jest bardzo wrażliwy na zmianę wielkości ciężarów osi, np. w punkcie pomiarowym DK11, gdzie odnotowano najniższe obciążenia osi pojazdów, średnie współczynniki równoważności obciążenia pojazdów wyznaczone Metodą Francuską były ok. 80% niższe niż dla pozostałych punktów pomiarowych.

11. Na wielkość oddziaływania pojazdów na warstwy związane cementem bardzo istotnie wpływa również grubość konstrukcji. Grubość konstrukcji nawierzchni wiąże się bezpośrednio z wielkością naprężeń na spodzie warstw związanych cementem, im cieńsza konstrukcja tym naprężenia od ruchu na spodzie warstw są większe. W przypadku konstrukcji cienkich - KR1, istnieje duże ryzyko przekroczenia wartości naprężenia równej wytrzymałości na rozciąganie materiału związanego cementem, co w konsekwencji prowadzi do otrzymania wysokich współczynników.
równoważności obciążenia pojazdu. Dla nawierzchni o większej grubości ryzyko przekroczenia naprężeń jest znacznie mniejsze.

2.4. Analiza zmian ruchu w czasie

Zarówno liczba pojazdów ciężarowych, jak i ich obciążenie zmieniają się w czasie. Wyznaczenie rocznych wahań w obciążeniu drogi ma znaczenie przy obliczeniu średnich współczynników równoważności obciążenia pojazdów dla niepełnych danych pomiarowych. Całkowity czas przeprowadzanych pomiarów na stacjach ważenia pojazdów uwzględniony w tym raporcie zamieszczono w tablicy 2.4.1.

Tablica 2.4.1. Okresy pomiarów ważenia pojazdów w ruchu

<table>
<thead>
<tr>
<th>Punkt pomiarowy</th>
<th>Kierunek</th>
<th>Okres pomiaru</th>
</tr>
</thead>
<tbody>
<tr>
<td>DK 46 Grodziec</td>
<td>Opole</td>
<td>XII 2010r. - X 2011r.</td>
</tr>
<tr>
<td></td>
<td>Częstochowa</td>
<td>XII 2010r. - X 2011r.</td>
</tr>
<tr>
<td>A2 Emilia</td>
<td>Konin</td>
<td>I 2011r. - X 2011r.</td>
</tr>
<tr>
<td></td>
<td>Łódź</td>
<td>I 2011r. - X 2011r.</td>
</tr>
<tr>
<td>DK 11 Byczyna</td>
<td>Opole</td>
<td>IX 2009r. - X 2011r.</td>
</tr>
<tr>
<td>DK 4 Wola Dębińska</td>
<td>Kraków</td>
<td>VII 2010r. - X 2011r.</td>
</tr>
<tr>
<td></td>
<td>Tarnów</td>
<td>VII 2010r. - XII 2010r.</td>
</tr>
<tr>
<td>DK 1 Włocławek</td>
<td>Łódź</td>
<td>II-III 2011r. VII-VIII 2011r.</td>
</tr>
</tbody>
</table>

Wyznaczenie rocznych wahań w ruchu dla wszystkich miesięcy w roku możliwe jest dla stacji na DK 11 (2 lata) oraz na DK 4. Dane dla pozostałych stacji nie są kompletnie do wyznaczenia rocznych zmian, przy czym dla stacji na DK 46 brakuje jednego miesiąca (listopada), na A2 brakuje 2 miesięcy (listopad i grudzień), natomiast na DK 1 zespół Politechniki Gdańskiej dysponował danymi tylko z pięciu miesięcy. Roczne zmiany w ruchu dla każdej ze stacji wyrażono za pomocą zmian w średnim dobowym natężeniu pojazdów ruchu ciężkiego, oraz za pomocą zmian w średniej dobowej liczbie przejezdów osi równoważnych. Wyniki obliczono dla miesięcznych przedziałów czasu z uwzględnieniem różnej liczby dni w miesiącu oraz dni, w których z przyczyn technicznych stacje ważenia były wyłączone (np. z powodu konserwacji urządzeń). W celu uproszczenia obliczeń w analizie nie rozgraniczono pojazdów ruchu ciężkiego na poszczególne kategorie.

2.4.1. Zmiany natężenia ruchu ciężkiego

Natężenie pojazdów ruchu ciężkiego dla poszczególnych stacji przedstawiono w postaci średniej dobowej liczby pojazdów przypadającej na jeden kierunek drogi w danym miesiącu. Wartość średniego natężenia wyznaczono ze wzoru:
gdzie:
\bar{N} - średnie dobowe natężenie ruchu ciężkiego w danym miesiącu [pojazdów/dobę]
N_i - liczba pojazdów w danym miesiącu przypadająca na jeden kierunek drogi
d - liczba dni objętych pomiarem w miesiącu

Rysunek 2.4.1. Roczne zmiany natężenia pojazdów ruchu ciężkiego na stacji DK46 w Grodźcu, oba kierunki jazdy

Rysunek 2.4.2. Roczne zmiany natężenia pojazdów ruchu ciężkiego na stacji A2 w Emilii, średnia z dwóch kierunków jazdy
Rysunek 2.4.3. Roczne zmiany natężenia pojazdów ruchu ciężkiego na stacji DK11 w Byczynie, jeden kierunek jazdy

Dodatkowo dla stacji DK11 Byczyna i DK4 Wola Dębińska zmiany natężenia pojazdów ruchu ciężkiego przedstawiono jako średnie dobowe natężenie ruchu w danym miesiącu względem roku, obliczone zgodnie ze wzorem:

\[n_i = \frac{\overline{N}_i}{\sum_{i=1}^{12} \overline{N}_i} \]

(2.4.2)

gdzie:

- \(n_i \) - średnie dobowe natężenie ruchu ciężkiego w i-tym miesiącu względem roku [%]
- \(\overline{N}_i \) - średnie dobowe natężenie ruchu ciężkiego w i-tym miesiącu [pojazdów/dobę]

Rysunek 2.4.4. Roczne zmiany średniego dobowego natężenia pojazdów ruchu ciężkiego na stacji DK4 w Woli Dębińskiej, średnia z dwóch kierunków jazdy
Rysunek 2.4.6. Roczne, względne zmiany natężenia pojazdów ruchu ciężkiego na stacji DK11 w Byczynie

Względne zmiany w natężeniu ruchu przedstawiono w tablicy 2.4.1 i na rysunkach 2.4.6, oraz 2.4.7. Ponieważ dla pozostałych punktów pomiarowych zespół Politechniki Gdańskiej dysponował danymi z okresów krótszych niż rok, nie było możliwe wyznaczenie względnych zmian natężenia ruchu.
Rysunek 2.4.7. Rocznne, względne zmiany natężenia pojazdów ruchu ciężkiego na stacji DK4 w Woli Dębińskiej

Jak widać natężenie pojazdów ruchu ciężkiego zmienia się w ciągu roku, przy czym jest ono wyraźnie niższe w okresie zimowym. Na obu stacjach największe natężenia ruchu pojazdów ciężkich odnotowano we wrześniu.

Tablica 2.4.1 Rocznne, względne zmiany natężenia pojazdów ruchu ciężkiego na stacjach DK11 i DK4

<table>
<thead>
<tr>
<th>Miesiąc</th>
<th>DK11</th>
<th>DK4</th>
<th>Średnia</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6,7%</td>
<td>6,3%</td>
<td>6,5%</td>
</tr>
<tr>
<td>II</td>
<td>7,8%</td>
<td>7,3%</td>
<td>7,5%</td>
</tr>
<tr>
<td>III</td>
<td>8,9%</td>
<td>8,5%</td>
<td>8,7%</td>
</tr>
<tr>
<td>IV</td>
<td>8,1%</td>
<td>8,1%</td>
<td>8,1%</td>
</tr>
<tr>
<td>V</td>
<td>8,0%</td>
<td>9,9%</td>
<td>8,9%</td>
</tr>
<tr>
<td>VI</td>
<td>8,9%</td>
<td>9,4%</td>
<td>9,1%</td>
</tr>
<tr>
<td>VII</td>
<td>8,8%</td>
<td>8,7%</td>
<td>8,8%</td>
</tr>
<tr>
<td>VIII</td>
<td>8,9%</td>
<td>8,6%</td>
<td>8,8%</td>
</tr>
<tr>
<td>IX</td>
<td>10,4%</td>
<td>9,8%</td>
<td>10,1%</td>
</tr>
<tr>
<td>X</td>
<td>8,8%</td>
<td>8,7%</td>
<td>8,7%</td>
</tr>
<tr>
<td>XI</td>
<td>7,9%</td>
<td>8,3%</td>
<td>8,1%</td>
</tr>
<tr>
<td>XII</td>
<td>6,8%</td>
<td>6,6%</td>
<td>6,7%</td>
</tr>
</tbody>
</table>

2.4.2. Zmiany obciążenia drogi pojazdami ruchu ciężkiego

Aby wyróżnić obciążenie drogi pojazdami nie wystarczy sama informacja o natężeniu ruchu. W trakcie roku zmienia się masa przewożonych ładunków, co w konsekwencji prowadzi do zmian w naciskach poszczególnych osi pojazdów. Zmienia się również struktura ruchu poszczególnych typów pojazdów. Zarówno naciski osi składowych pojazdów, jak i struktura ruchu wpływają na...
oddziaływanie pojazdów na nawierzchnię. Wielkościami uwzględniającymi wymienione czynniki są średnie współczynniki równoważności obciążenia pojazdów. Iloczyn średniego współczynnika równoważności obciążenia pojazdu i natężenia ruchu ciężkiego w danym przedziale czasu jest miarą niszczącego oddziaływania pojazdów na nawierzchnię, lub inaczej nazywając, obciążeniem drogi, i określa się go jako średnią liczbę osi standardowych przypadającą na pas:

$$\bar{L} = \bar{N} \cdot \bar{F}$$ \hspace{1cm} (2.4.3)

gdzie:

\(\bar{L}\) - średnie miesięczne obciążenie drogi wyrażone liczbą przejazdów osi standardowych 100kN

\(\bar{N}\) - średnie dobowe natężenie ruchu ciężkiego w danym miesiącu

\(\bar{F}\) - średni współczynnik równoważności obciążenia pojazdów ruchu ciężkiego dla danego miesiąca

W celu uproszczenia obliczeń nie wyszczególniano poszczególnych kategorii pojazdów, wartość L wyraża zatem obciążenie drogi całym ruchem ciężkim. Dla stacji z danymi pomiarowymi obejmującymi minimum rok, czyli dla Byczyny - DK 11 oraz dla Woli Dębińskiej - DK 4, wyznaczono względne obciążenie drogi zgodnie ze wzorem:

$$l_i = \frac{L_i}{\sum_{i=1}^{12} L_i}$$ \hspace{1cm} (2.4.4)

gdzie:

\(l_i\) - względne obciążenie drogi wyrażone jako stosunek średniego, dobowego obciążenie drogi ruchu ciężkiego w i-tym miesiącu do sumy średnich dobowych obciążeń drogi we wszystkich miesiącach danego roku [%]

\(L_i\) - średnie dobowe obciążenie drogi pojazdami ruchu ciężkiego w i-tym miesiącu [osi 100kN/dobę]

Względne zmiany obciążenia dróg ruchem ciężkim przedstawione na rysunku 2.4.8 (średnia z 2 lat) oraz na rysunku 2.4.9 zebrano w tablicy 2.4.2 i obliczono średnie obciążenie z dwóch punktów pomiarowych.
Rysunek 2.4.8. Roczne, względne zmiany obciążenia drogi ruchem ciężkim na stacji DK11 w Byczynie

Na podstawie tablicy 2.4.2 można wyznaczyć obciążenie drogi przypadające na kolejne pory roku, i tak przyjmując, że na zimę przypadają miesiące od I do III, na wiosnę IV-VI, na lato VII-IX oraz na jesień X-XII uzyskano obciążenie drogi w poszczególnych porach roku jako sumę obciążenia w miesiącach przypadających na daną porę roku. Wyniki przedstawiono w tablicy 2.4.3.

Roczny podział obciążenia dróg ruchem ciężkim przedstawiony w tablicy 2.4.3 w przybliżeniu pokrywa się z założeniami obecnego Katalogu, w którym przyjęto, że na okres zimowy przypada 20% rocznego obciążenia ruchem, na okres wiosenno-jesienny 50%, natomiast na okres letni 30%.

Rysunek 2.4.9. Roczne, względne zmiany obciążenia drogi ruchem ciężkim na stacji DK4 w Woli Dębińskiej
Tablica 2.4.2. Względne zmiany obciążenia drogi dla stacji w Byczynie - DK11 i w Woli Dębińskiej - DK4

<table>
<thead>
<tr>
<th>miesiąc</th>
<th>Względne obciążenie drogi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK 4 Wola Dębińska</td>
</tr>
<tr>
<td>I</td>
<td>6,3%</td>
</tr>
<tr>
<td>II</td>
<td>7,3%</td>
</tr>
<tr>
<td>III</td>
<td>8,5%</td>
</tr>
<tr>
<td>IV</td>
<td>8,1%</td>
</tr>
<tr>
<td>V</td>
<td>9,9%</td>
</tr>
<tr>
<td>VI</td>
<td>9,4%</td>
</tr>
<tr>
<td>VII</td>
<td>8,7%</td>
</tr>
<tr>
<td>VIII</td>
<td>8,6%</td>
</tr>
<tr>
<td>IX</td>
<td>9,8%</td>
</tr>
<tr>
<td>X</td>
<td>8,7%</td>
</tr>
<tr>
<td>XI</td>
<td>8,3%</td>
</tr>
<tr>
<td>XII</td>
<td>6,6%</td>
</tr>
</tbody>
</table>

Tablica 2.4.3 Względne obciążenie drogi przypadające na poszczególne pory roku

<table>
<thead>
<tr>
<th>pora roku</th>
<th>Względne obciążenie drogi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK 4 Wola Dębińska</td>
</tr>
<tr>
<td>zima XII-II</td>
<td>20,1%</td>
</tr>
<tr>
<td>wiosna III-V i jesień IX-XI</td>
<td>53,2%</td>
</tr>
<tr>
<td>lato VI-VIII</td>
<td>26,7%</td>
</tr>
</tbody>
</table>

2.4.3. Wpływ sezonowych zmian obciążenia drogi na wartość średnich współczynników równoważności obciążenia pojazdów

Ponieważ obciążenia pojazdów ciężarowych zmieniają się w ciągu roku, średnie współczynniki równoważności obliczone dla innych przedziałów czasowych niż rok należy skorygować. W tym celu wyprowadzono wzór na współczynnik korekcyjny i nazwano go współczynnikiem sezonowości. Przyjęto, że średni roczny współczynnik równoważności obciążenia pojazdów \(F_{rok} \) jest równy:

\[
F_{rok} = f \cdot F_x
\]

(2.4.5)

gdzie:

\(f \) - współczynnik sezonowości

\(F_x \) - współczynnik równoważności obciążenia pojazdów dla okresu \(x \) krótszego niż rok
Wzór na średni współczynnik równoważności obciążenia pojazdu z danego okresu lub z roku można przedstawić jako średnią ważoną z miesięcznych współczynników równoważności obciążenia, zgodnie ze wzorem:

\[\bar{F}_x = \frac{\sum_{i=1}^{m} \bar{F}_i \cdot \bar{N}_i}{\sum_{i=1}^{m} \bar{N}_i} \]
(2.4.6)

gdzie:
\(\bar{F}_i \) - średni współczynnik równoważności obciążenia pojazdów w miesiącu i
\(\bar{N}_i \) - średnia obliczana liczba pojazdów w miesiącu i
\(m \) - liczba miesięcy, dla roku \(m=12 \)

Równaniem równoważnym do wzoru 2.4.6 jest:

\[\bar{F}_x = \frac{\sum_{i=1}^{m} \bar{L}_i}{\sum_{i=1}^{m} \bar{N}_i} \]
(2.4.7)

gdzie:
\(\bar{L}_i \) - średnie dobowe obciążenie drogi współczynnik równoważności obciążenia pojazdów w miesiącu i,
pozostałe oznaczenia jak we wzorze 2.4.6.

Podstawiając do wzoru 2.4.5 wzór 2.4.7 przy czym \(m \) pozostaje zmienną zależącą od dostępnej liczby miesięcy pomiarowych, natomiast dla \(\bar{F}_{rok} \) \(m=12 \) otrzymamy kolejno:

\[f = \frac{\bar{F}_{rok}}{\bar{F}_x} \]
(2.4.8)

\[f = \frac{\sum_{i=1}^{12} \bar{L}_i}{\sum_{i=1}^{12} \bar{N}_i} = \frac{\bar{N}_1 + \bar{N}_2 + \cdots + \bar{N}_m}{\bar{L}_1 + \bar{L}_2 + \cdots + \bar{L}_m} \]
(2.4.9)

Jeżeli przyjąć, że średni roczny rozkład ruchu na wszystkich stacjach jest zbliżony do korzystając z zależności 2.4.2 oraz 2.4.4:

\[\frac{\bar{N}_1 + \bar{N}_2 + \cdots + \bar{N}_m}{\sum_{i=1}^{12} \bar{N}_i} = \sum_{i=1}^{m} n_i \]
(2.4.10)

\[\frac{\bar{L}_1 + \bar{L}_2 + \cdots + \bar{L}_m}{\sum_{i=1}^{12} \bar{L}_i} = \sum_{i=1}^{m} l_i \]
(2.4.11)

gdzie:
\(n_i \) - średni obciążenie ciężkiego ruchu w i-tym miesiącu względem roku [\%], dla kolejnych miesięcy \(n_i \) dobiera się z tablicy 2.4.1
\(l_i \) - względnó obciążenie drogi wyrażone jako stosunek średniego, dobowego obciążenia drogi ruchu ciężkiego w i-tym miesiącu do sumy średnich obciążeni drogi we wszystkich miesiącach danego roku [\%], dla kolejnych
miesięcy wielkość l_i dobiera się z tablicy 2.4.2 jako średnią z 2 punktów pomiarowych.

m - liczba miesięcy objętych pomiarem

Podstawiając równania 2.4.10 i 2.4.11 do równania 2.4.9 otrzymamy:

$$f = \frac{\sum_{i=1}^{m} n_i}{\sum_{i=1}^{m} l_i}$$ (2.4.12)

gdzie oznaczenia jak wyżej.

Współczynnik sezonowości f dla pomiaru trwającego pełen rok wynosi 1,0. Dla pomiaru o długości innej niż rok współczynnik sezonowości oblicza się ze wzoru 2.4.12 dobierając wartości średnie n_i z tablicy 2.4.1 i l_i z tablicy 2.4.2 dla miesięcy objętych pomiarem. Wyjątek stanowią punkty pomiarowe DK4 i DK11, dla których wartości n_i i l_i przyjęto dla wyników konkretnnej stacji, a nie dla średniej z dwóch stacji. Współczynniki sezonowości dla poszczególnych punktów pomiarowych oraz skorygowane wartości średnich współczynników równoważności obciążenia pojazdów dla metody 4-tej potęgi przedstawiano w tablicy 2.4.4.

Tablica 2.4.4. Współczynniki równoważności obciążenia pojazdów dla metody 4-tej potęgi skorygowane o współczynniki sezonowości.

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>F_{sr}</th>
<th>σ</th>
<th>$F_{sr} + 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
<td>DK11</td>
<td>DK4</td>
</tr>
<tr>
<td>C</td>
<td>0,244</td>
<td>0,234</td>
<td>0,263</td>
<td>0,234</td>
</tr>
<tr>
<td>C+P</td>
<td>0,953</td>
<td>1,027</td>
<td>0,623</td>
<td>0,886</td>
</tr>
<tr>
<td>A</td>
<td>0,727</td>
<td>0,633</td>
<td>0,643</td>
<td>0,910</td>
</tr>
<tr>
<td>Współczynnik sezonowości</td>
<td>0,998</td>
<td>0,988</td>
<td>1,011</td>
<td>1,005</td>
</tr>
</tbody>
</table>

2.5. Wpływ pojazdów przeciążonych na średnie współczynniki równoważności obciążenia osi

2.5.1. Limity nacisków osi pojazdów obowiązujące w Polsce

Zgodnie z Rozporządzeniami Ministra Infrastruktury [7] i [8] na Polskich drogach dopuszczalne limity nacisków osi mogą osiągać wartości 80 kN, 100 kN lub 115 kN. Standardowy limit nacisków osi wynosi 80 kN i obowiązuje on dla większości dróg. Wykaz dróg dla których podniesiono limity nacisków osi do 100 kN i 115 kN przedstawiono w pozycjach [7] i [8]. Należy zwrócić uwagę na fakt, że od 1 stycznia 2011r. Polska musi zezwolić pojazdom poruszającym się w ruchu międzynarodowym osiągnięcie limitów nacisków osi określonych w dyrektywie
czyli 115 kN. Maksymalne naciski poszczególnych osi w pojazdach w zależności od przyjętego limitu obciążenia przedstawiono w tablicy 2.5.1.

Tablica 2.5.1 Dopuszczalne naciski na osie składowe przy limitach obciążenia osi 80 kN, 100 kN lub 115 kN. [10]

<table>
<thead>
<tr>
<th>Odległość między ośmioma zespołami [cm]</th>
<th>Dopuszczalne naciski na oś</th>
<th>Limit 11,5/oś</th>
<th>Limit 10/oś</th>
<th>Limit 8/oś</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nacisk na zestaw osi [kN]</td>
<td>Nacisk na oś składową [kN]</td>
<td>Nacisk na zestaw osi [kN]</td>
<td>Nacisk na oś składową [kN]</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>110</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>150</td>
<td>144</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>180</td>
<td>160</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>144</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>190</td>
<td>170</td>
<td>152</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>115</td>
<td>100</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>150</td>
<td>144</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>190</td>
<td>170</td>
<td>152</td>
<td>76</td>
</tr>
</tbody>
</table>

Dla danych z pomiarów ważenia pojazdów w ruchu przeprowadzono analizę przekroczenia poszczególnych limitów obciążeń. Pierwszym etapem analizy było sprawdzenie każdego pojazdu pod kątem przekroczenia limitu nacisku. Jeżeli co najmniej jedna z ośmiu osi pojazdu przekraczała dopuszczalny nacisk zgodnie z tablicą 2.5.1 to pojazd klasyfikowany był jako przeciążony względem danego limitu nacisku osi. Należy zaznaczyć, że sklasyfikowanie pojazdu jako przeciążony dla celów niniejszej analizy oznacza, że pojazd przekracza założony limit nacisku na oś, który nie musi odpowiadać limitowi obowiązującemu na danej drodze. Limity nacisków osi na poszczególnych stacjach pomiarowych wynoszą odpowiednio:

- DK 46 Grodziec - 100 kN / oś
- A2 Emilia - 115 kN / oś
- DK 11 Byczyna - 100 kN / oś
- DK 4 Wola Dębińska 115 kN / oś
- DK 1 Włocławek 115 kN / oś

2.5.2. Dopuszczalne masy pojazdów ruchu ciężkiego

Oprócz limitów nacisków osi przepisy określają również dopuszczalne masy pojazdów. Dopuszczalne wartości mas poszczególnych typów pojazdów przedstawiono w tablicy 2.5.2 wzorując je na przepisach prawnych [10] i publikacji [19].

Tablica 2.5.2 Dopuszczalne wartości ciężarów całkowitych poszczególnych typów pojazdów w zależności od limitu obciążenia osi [19]

<table>
<thead>
<tr>
<th>Kategoria</th>
<th>Typ</th>
<th>Ciężar całkowity pojazdu [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>limit 115 kN/oś</td>
</tr>
<tr>
<td>Ciężarowe</td>
<td>11</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>320</td>
</tr>
<tr>
<td>Ciężarowe z przyczepą</td>
<td>111</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>1112</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>122</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>1211</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>1212</td>
<td>400</td>
</tr>
<tr>
<td>ciągniki ośdolowe z naczepą</td>
<td>111</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>122</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>440</td>
</tr>
<tr>
<td>Autobusy</td>
<td>11</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>280</td>
</tr>
</tbody>
</table>
2.5.3. Wyznaczenie korelacji między udziałami pojazdów przekraczających limit nacisków osi a współczynnikiem równoważności obciążenia pojazdu.

Po sklasyfikowaniu każdego pojazdu pod względem przekroczenia przyjętych limitów obciążenia dla każdego dostępnego dnia pomiaru obliczono procentowy udział pojazdów przekraczających limit obciążenia zgodnie ze wzorem:

\[u_k = \frac{P_k}{N} \]

gdzie:
\(u_k \) - udział pojazdów przeciążonych, czyli przekraczających przyjęty limit obciążenia osi \(k \) (80 kN/oś, 100 kN/oś lub 115 kN/oś) w danym dniu,
\(P_k \) - liczba pojazdów przekraczających limit obciążenia \(k \),
\(N \) - liczba wszystkich pojazdów zaobserwowanych danego dnia.

Równocześnie z obliczeniem udziału pojazdów przeciążonych wyznaczono średnie współczynniki równoważności obciążenia pojazdu dla danego dnia, zgodnie z procedurą opisaną w punkcie 2.3. Obliczenia ograniczono do metody 4-tej potęgi. Ponieważ dziennie udziały pojazdów przeciążonych jak i średnie współczynniki równoważności obciążenia pojazdów nie są stałe, potraktowano je jako zmienne losowe charakteryzujące dany dzień. Tak przyjęte zmienne losowe odznaczono na wykresach, którego przykład przedstawiono na rysunku 2.5.1. Następnie przeprowadzono regresję liniową dla zmiennych charakteryzujących każdy dzień w celu ustalenie korelacji pomiędzy udziałem pojazdów przekraczających a średnim współczynnikiem równoważności obciążenia pojazdu. W wyniku przeprowadzonej analizy statystycznej stwierdzono wysoki poziom zależności liniowej pomiędzy udziałem pojazdów przeciążonych a średnim współczynnikiem równoważności obciążenia pojazdów. Poziom korelacji liniowej opisano współczynnikiem Pearsona \(R^2 \). Wynikiem regresji liniowej są funkcje liniowe opisane ogólnym wzorem:

\[F = a \cdot u_k + b \]

gdzie;
\(F \) - średni dobowy współczynnik równoważności obciążenia pojazdu danej kategorii
\(u_k \) - udział pojazdów danej kategorii przekraczających limit obciążenia \(k \) (udział pojazdów przeciążonych)
\(a, b \) - współczynniki korelacji liniowej przedstawione w tablicach 2.5.2-2.5.6
Rysunek 2.5.1 Przykładowy wykres korelacji pomiędzy udziałem pojazdów przekraczających limit obciążenia 115kN/oś a średnim, dobowym współczynnikiem równoważności obciążenia pojazdów ciężarowych z przyczepą dla danych ze stacji w Grodźcu DK 46.

Tablica 2.5.2. Współczynniki korelacji liniowej pomiędzy udziałem pojazdów przeciążonych a średnim współczynikiem równoważności obciążenia pojazdu, wyznaczone dla limitów obciążenia 80 kN, 100 kN, 115 kN dla stacji w Grodźcu DK46.

<table>
<thead>
<tr>
<th>limit 115 kN / oś</th>
<th>limit 100 kN / oś</th>
<th>limit 80 kN / oś</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>3,1437</td>
<td>0,1675</td>
</tr>
<tr>
<td>C+P</td>
<td>2,6412</td>
<td>0,7494</td>
</tr>
<tr>
<td>A</td>
<td>3,6053</td>
<td>0,5899</td>
</tr>
</tbody>
</table>

Tablica 2.5.3. Współczynniki korelacji liniowej pomiędzy udziałem pojazdów przeciążonych a średnim współczynikiem równoważności obciążenia pojazdu, wyznaczone dla limitów obciążenia 80 kN, 100 kN, 115 kN dla stacji w Emilli - A2.

<table>
<thead>
<tr>
<th>limit 115 kN / oś</th>
<th>limit 100 kN / oś</th>
<th>limit 80 kN / oś</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>3,5286</td>
<td>0,1543</td>
</tr>
<tr>
<td>C+P</td>
<td>3,013</td>
<td>0,5827</td>
</tr>
<tr>
<td>A</td>
<td>0,8182</td>
<td>0,651</td>
</tr>
</tbody>
</table>
Tablica 2.5.4. Współczynniki korelacji liniowej pomiędzy udziałem pojazdów przeciążonych a średnim współczynikiem równoważności obciążenia pojazdu, wyznaczone dla limitów obciążenia 80 kN, 100 kN, 115 kN dla stacji w Byczynie - DK11.

<table>
<thead>
<tr>
<th>limit 115 kN / oś</th>
<th>limit 100 kN / oś</th>
<th>limit 80 kN / oś</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>R^2</td>
</tr>
<tr>
<td>C</td>
<td>3,1423</td>
<td>0,219</td>
</tr>
<tr>
<td>C+P</td>
<td>5,1504</td>
<td>0,4246</td>
</tr>
<tr>
<td>A</td>
<td>1,5272</td>
<td>0,5156</td>
</tr>
</tbody>
</table>

Tablica 2.5.5. Współczynniki korelacji liniowej pomiędzy udziałem pojazdów przeciążonych a średnim współczynikiem równoważności obciążenia pojazdu, wyznaczone dla limitów obciążenia80 kN, 100 kN, 115 kN dla stacji w Woli Dębińskiej - DK4.

<table>
<thead>
<tr>
<th>limit 115 kN / oś</th>
<th>limit 100 kN / oś</th>
<th>limit 80 kN / oś</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>R^2</td>
</tr>
<tr>
<td>C</td>
<td>4,0172</td>
<td>0,1155</td>
</tr>
<tr>
<td>C+P</td>
<td>2,9519</td>
<td>0,6687</td>
</tr>
<tr>
<td>A</td>
<td>2,8419</td>
<td>0,7311</td>
</tr>
</tbody>
</table>

Tablica 2.5.6. Współczynniki korelacji liniowej pomiędzy udziałem pojazdów przeciążonych a średnim współczynikiem równoważności obciążenia pojazdu, wyznaczone dla limitów obciążenia 80 kN, 100 kN, 115 kN dla stacji we Włocławku - DK1.

<table>
<thead>
<tr>
<th>limit 115 kN / oś</th>
<th>limit 100 kN / oś</th>
<th>limit 80 kN / oś</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>R^2</td>
</tr>
<tr>
<td>C</td>
<td>2,7797</td>
<td>0,2143</td>
</tr>
<tr>
<td>C+P</td>
<td>2,0968</td>
<td>0,7022</td>
</tr>
<tr>
<td>A</td>
<td>4,6251</td>
<td>0,5555</td>
</tr>
</tbody>
</table>

2.5.4. Wyznaczenie korelacji między udziałem pojazdów przekraczających limit masy a współczynnikiem równoważności obciążenia pojazdu.

Analogicznie jak dla procedury opisanej w punkcie 2.5.3 sprawdzono korelację pomiędzy udziałem pojazdów przekraczających dopuszczalny limit masy \(u_m \) a współczynnikiem równoważności obciążenia pojazdu i \(F \). W wyniku przeprowadzonej analizy statystycznej stwierdzono mniejszą korelację pomiędzy parametrami \(u_m \) i \(F \), niż w przypadku zależności pomiędzy \(u_k \) i \(F \), czego przykład przedstawiono na rysunku 2.5.2. Co więcej udział pojazdów przekraczających dopuszczalną masę jest niski, a czynnikiem bardziej istotnym niż masa całkowita pojazdu jest nacisk jego osi składowych. Z tych powodów w dalszej analizie nie uwzględniono wpływu pojazdów przekraczających dopuszczalną masę na wielkość współczynnika równoważności obciążenia pojazdu.
2.5.2 Przykład wykresów zależności współczynnika równoważności obciążenia pojazdu od udziału pojazdów przekraczających dozwolony ciężar całkowity - DK 4 Wola Dębińska - pojazdy ciężarowe z przyczepą - limit obciążenia 115 kN/oś

2.5.5. Przyjęcie poziomu przekroczenia limitów obciążenia osi dla polskich dróg i obliczenie dla nich współczynników równoważności obciążenia pojazdów.

Stacje ważenia pojazdów w ruchu służą do zbierania danych statystycznych, ale również do kontroli pojazdów przeciążonych, dlatego istnieje ryzyko, że część kierowców wiedząc, że ich pojazd może być przeciążony, omija punkty kontroli. Należy nadmienić, że kontrola inspekcji transportu drogowego nie jest ciągła, co znajduje swoje odzwierciedlenie w udziale pojazdów przekraczających limit obciążenia. Dla niektórych dni udział pojazdów przeciążonych jest niski, co może wskazywać na prawdopodobną kontrolę przez inspekcję transportu drogowego, występują jednak te dni dla których udział pojazdów jest wyższy, czyli kontrola prawdopodobnie nie jest prowadzona. Na stacji A2 Emiliii nie przeprowadza się kontroli pojazdów przeciążonych, zbierane są jedynie dane w celach statystycznych, dlatego na tej stacji nie występuje zjawisko omijania punktu przez pojazdy przeciążone.

Poziomy przekroczenia limitów obciążenia wyznaczono osobno dla dróg o dopuszczalnym nacisku 115 kN/oś, 100 kN/oś i 80 kN/oś. Poziomy przyjęto jak dla reprezentatywnych punktów pomiarowych:

- Dla dopuszczalnego nacisku 115 kN/oś przyjęto poziom przeciążenia jak dla punktu pomiarowego na autostradzie A2, gdzie jednocześnie odnotowany jest najwyższy udział pojazdów przeciążonych z pośród wszystkich punktów pomiarowych.
Dla dopuszczalnego nacisku 100 kN/oś przyjęto poziom przeciżenia jako średnią z udziałów pojazdów przekraczających limit 100 kN/oś dla punktów pomiarowych DK 1, DK 46 i DK 4, które reprezentują mocno obciążone drogi krajowe.

Dla dopuszczalnego nacisku 80 kN/oś przyjęto poziom przeciżenia jak dla stacji w Byczynie, gdzie odnotowany udział pojazdów przekraczających jest najniższy.

Współczynniki równoważności obciążenia pojazdów obliczono na podstawie funkcji liniowych wyznaczonych w punkcie 2.5.3 dla każdej stacji z osobna dla przyjętego poziomu udziału pojazdów przekraczających limit obciążenia osi. Wyniki przedstawiono w tablicach 2.5.7-2.5.9.

Tablica 2.5.7. Współczynniki równoważności obciążenia pojazdów wyznaczone dla dróg o dopuszczalnym nacisku 80 kN/oś.

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Udział pojazdów przekraczających limit obciążenia 80 kN / oś</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
</tr>
<tr>
<td>C</td>
<td>0,237</td>
<td>0,231</td>
</tr>
<tr>
<td>C+P</td>
<td>0,681</td>
<td>0,669</td>
</tr>
<tr>
<td>A</td>
<td>0,674</td>
<td>0,705</td>
</tr>
</tbody>
</table>

Tablica 2.5.8. Współczynniki równoważności obciążenia pojazdów wyznaczone dla dróg o dopuszczalnym nacisku 100 kN/oś.

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Udział pojazdów przekraczających limit obciążenia 100 kN / oś</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
</tr>
<tr>
<td>C</td>
<td>0,257</td>
<td>0,252</td>
</tr>
<tr>
<td>C+P</td>
<td>1,044</td>
<td>1,056</td>
</tr>
<tr>
<td>A</td>
<td>0,747</td>
<td>0,603</td>
</tr>
</tbody>
</table>

Tablica 2.5.9. Współczynniki równoważności obciążenia pojazdów wyznaczone dla dróg o dopuszczalnym nacisku 115 kN/oś.

<table>
<thead>
<tr>
<th>Kategoria pojazdu</th>
<th>Stacja</th>
<th>Udział pojazdów przekraczających limit obciążenia 115 kN / oś</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46</td>
<td>A2</td>
</tr>
<tr>
<td>C</td>
<td>0,246</td>
<td>0,243</td>
</tr>
<tr>
<td>C+P</td>
<td>1,174</td>
<td>1,065</td>
</tr>
<tr>
<td>A</td>
<td>0,734</td>
<td>0,684</td>
</tr>
</tbody>
</table>
2.6. Dobór współczynników przeliczeniowych pojazdów ruchu ciężkiego dla nawierzchni podatnych

Doboru współczynników przeliczeniowych dokonano w oparciu o analizę wielokryterialną uwzględniając:

- średnie współczynniki równoważności obciążenia pojazdów ruchu ciężkiego obliczone dla poszczególnych punktów pomiarowych, ich odchylenie standardowe oraz wartość końcową,
- różnice w metodach obliczeń współczynników równoważności obciążenia pojazdów,
- wpływ grubości konstrukcji nawierzchni,
- współczynniki równoważności obciążenia pojazdów wyznaczone w oparciu o przyjęte poziomy przekroczenia limitów obciążenia osi pojazdów,
- ważność dróg - mniejsze dopuszczalne uszkodzenia na końcu okresu eksploatacji dla dróg krajowych, ekspresowych i autostrad oraz większy dopuszczalny poziom uszkodzeń dla pozostałych dróg.

Zespół autorski postanowił, że współczynniki przeliczeniowe ruchu ciężkiego z powodu różnych dopuszczalnych limitów obciążenia osi pojazdów, oraz różnej struktury rodzajowej, jak i różnym obciążeniu pojazdów, powinny być podane w osobnych, trzech kategoriach:

- dla autostrad i dróg ekspresowych
- dla dróg krajowych
- dla pozostałych dróg

Propozowane współczynniki przeliczeniowe dla nawierzchni podatnych zamieszczono w tablicy 2.6.1. Wartości przedstawionych współczynników mają charakter wstępny, możliwa jest ich nieznaczna korekta. Wprowadzenie ewentualnej korekty może być spowodowane zastosowaniem współczynnika bezpieczeństwa, wynikającego z możliwości wzrostu ciężarów osi w przyszłości, na wzór brytyjskiej metody obliczania współczynników przeliczeniowych, opisanej w [18].

W przypadku warstw związanych cementem wartości średnich współczynników równoważności obciążenia pojazdu w pierwszym etapie pracy nawierzchni (do pojawienia się spękań podbudowy związanej cementem) znacząco różnią się od współczynników obliczonych dla nawierzchni podatnych. Docelowo w Katalogu nie przewiduje się podawania osobnych współczynników dla warstw związanych cementem w nawierzchniach półsztywnych. Oddziaływanie pojazdów na warstwy związane cementem zostanie uwzględnione przy wymiarowaniu konstrukcji nawierzchni półsztywnych.
Tablica 2.6.1 Propozycja nowych współczynników przeliczeniowych do obliczania ruchu projektowego.

<table>
<thead>
<tr>
<th>Autostrady, drogi ekspresowe i drogi krajowe o limicie nacisku osi 115kN (1)</th>
<th>Drogi krajowe i wojewódzkie o limicie nacisku osi 100kN (2)</th>
<th>Pozostałe drogi (o limicie nacisku osi 80kN) (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0,35</td>
<td>0,30</td>
</tr>
<tr>
<td>C+P</td>
<td>1,35</td>
<td>1,10</td>
</tr>
<tr>
<td>A</td>
<td>0,90</td>
<td>0,85</td>
</tr>
</tbody>
</table>

(1) Wszystkie autostrady i drogi ekspresowe, oraz te drogi krajowe, na których dopuszczo ruch pojazdów o nacisku dopuszczalnym 115 kN/oś zgodnie z [7]
(2) Wszystkie pozostałe drogi krajowe nie objęte w wykazie [7] oraz te drogi wojewódzkie, na których dopuszczo ruch pojazdów o limicie nacisków osi równym 100 kN/oś zgodnie z [8]
(3) Wszystkie pozostałe drogi: drogi powiatowe i gminne, oraz drogi wojewódzkie nie wymienione w wykazie [8]

2.7. Porównanie obliczonych współczynników przeliczeniowych z ich odpowiednikami wykorzystywanymi w wybranych krajach europejskich.

Ruch drogowy w krajach wspólnoty europejskiej jest normowany przepisami komisji europejskiej. Zgodnie z ustaleniami dyrektywy UE 96/53/EC pojazdy poruszające się w ruchu międzynarodowym krajów wspólnoty muszą spełniać wymagania co do wymiarów i nacisków na osie składowe, w związku z czym typu pojazdów poruszające się w krajach Unii Europejskiej są podobne. Limit nacisków osi pojazdów w ruchu międzynarodowym wynosi 115 kN/oś (dokładne rozpisanie nacisków na poszczególne osie przedstawiono w tablicy 2.5.1), jednak w ruchu krajowym limity mogą być ustalane indywidualnie. Przykładem krajów stosujących odrębne przepisy dla ruchu krajowego jest Polska, gdzie ustalono 3 limity obciążenia osi 80 kN, 100 kN i 115 kN, lub Francja, gdzie limit obciążenia osi ustalono na poziomie 130 kN/oś. Zestawienie nacisków osi dla wybranych krajów europejskich przedstawiono w tablicy 2.7.1.

Tablica 2.7.1 Dopuszczalne ciężary osi pojazdów w wybranych krajach europejskich.[15]

<table>
<thead>
<tr>
<th>Kraj</th>
<th>Dopuszczalny ciężar osi nienapędowej [kN]</th>
<th>Dopuszczalny ciężar osi napędowej [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Belgia</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Bułgaria</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Czecho</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Dania</td>
<td>100</td>
<td>100/115</td>
</tr>
<tr>
<td>Finlandia</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Francja</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Grecja</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Hiszpania</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Holandia</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Irlandia</td>
<td>100</td>
<td>105/115</td>
</tr>
<tr>
<td>Litwa</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Niemcy</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Rosja</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Słowacja</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Szwajcaria</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Ukraina</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Węgry</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Wielka Brytania</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Włochy</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>POLSKA</td>
<td>80 / 100</td>
<td>80 / 100 / 115</td>
</tr>
</tbody>
</table>

2.7.1. Porównanie metod obliczania ruchu projektowego wg katalogu polskiego i niemieckiego. Porównanie współczynników równoważności obciążenia pojazdów ze współczynnikami niemieckimi.

W katalogu niemieckim RSTO 01 [12] przy projektowaniu uwzględnia się pojazdy ciężarowe o masie powyżej 3,5tony. Podobnie jak w katalogu polskim, trwałość zmęczeniową nawierzchni określa się jako sumę przejazdów osi równoważnych o ciężarze 100 kN (oznaczona jako B od Beanspruchung – obciążenie), w przewidywanym okresie eksploatacji. W katalogu podano dwie metody obliczania obciążenia B:

- **metoda 1** – obciążenie B wyznaczone jest na podstawie średnio-dobowego natężenia ruchu ciężkiego,
- **metoda 2** – obciążenie B wyznacza się na podstawie danych o obciążeniu osi pojazdów, do zastosowania tej metody należy dysponować danymi z ważenia pojazdów.
Dodatkowo dla każdej z metod ruch całkowity można wyznaczyć na dwa sposoby, w zależności od przewidywanego wzrostu ruchu: przy zmiennych w kolejnych latach współczynnikach wzrostu ruchu lub przy stałych współczynnikach wzrostu ruchu. Dla uproszczenia do porównania przyjęto wariant obliczania ruchu całkowitego przy stałych współczynnikach wzrostu ruchu ciężkiego. Obciążenie B wyznacza się, w zależności od metody, zgodnie z następującymi wzorami:

Metoda 1:

\[B = DTA^{(SV)} \cdot q_{BM} \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_z \cdot 365 \]

(2.7.1)

Metoda 2:

\[B = N \cdot EDTA^{(SV)} \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_z \cdot 365 \]

(2.7.2)

gdzie:

- \(N \) – zakładany okres eksploatacji, najczęściej 30 lat,
- \(f_1 \) – wskaźnik liczby pasów ruchu, przyjmuje wartości między 1,0 dla pojedynczego pasa ruchu, a 0,8 dla trzech i więcej pasów ruchu w jednym kierunku
- \(f_2 \) – wskaźnik szerokości pasa ruchu, przyjmuje wartości od 1,0 (dla pasa o szerokości \(\geq \) 3,75 m) do 2,0 (dla pasa o szerokości < 2,0m)
- \(f_3 \) – wskaźnik pochylenia niwelety, przyjmuje wartości od 1,0 przy pochyleniu < 2% do 1,45 dla pochylenia większego niż 10%
- \(f_z \) – wskaźnik wzrostu ruchu ciężkiego (na ogół przyjmuje się 2%),
- \(q_{BM} \) – współczynnik przeliczeniowy uwzględniający średni obciążenie osi, współczynnik ten dobierany jest w zależności od klasy drogi,
- \(DTA^{(SV)} \) – średnia dobowa liczba osi ruchu ciężkiego, wielkość tą określa się ze wzoru:

\[DTA^{(SV)} = DTV^{(SV)} \cdot f_A \]

(2.7.3)

- \(f_A \) – współczynnik liczby osi, czyli średnia liczba osi przypadająca na jeden pojazd ciężarowy,
- \(DTV^{(SV)} \) – średniodobowe natężenie ruchu pojazdów ciężkich
- \(EDTA^{(SV)} \) – średnia dobowa liczba równoważnych osi ruchu ciężkiego (10 t), wielkość tą określa się ze wzoru:

\[EDTA^{(SV)} = \Sigma DTA_k^{(SV)} \cdot \left(\frac{I_k}{I_0} \right)^4 \]

(2.7.4)

- \(I_k \) – średnie obciążenie osi w klasie obciążenia k
- \(I_0 \) – obciążenie osi porównawczej równé 10 t
- \(DTA_k^{(SV)} \) – średnia dobowa liczba osi ruchu ciężkiego w klasie obciążenia k.

W metodach 1 i 2 współczynniki \(f_1, f_2, f_3 \) i \(f_z \) są identyczne. Metoda 2 wykorzystuje powszechnie stosowany wzór „czwartej potęgi”. W dalszej części rozważono tylko metodę 1, w celu porównania niemieckich współczynników.
przeliczeniowych obciążenia osi do współczynników polskich. W RSTO 01 współczynniki przeliczeniowe podawane są dla wszystkich pojazdów o masie powyżej 3,5 t, nie ma zatem rozróżnienia na poszczególne typy, jak w katalogu polskim czy brytyjskim. Należy również zwrócić uwagę na fakt, że natężenie ruchu ciężkiego przeliczane jest na liczbę osi (współczynnik \(f_A \), współczynnik \(q_{BM} \) służy do przeliczania liczby osi ruchu ciężkiego na osie standardowe. Aby wyznaczyć niemiecki współczynnik przeliczeniowy pojazdu należy pomnożyć współczynniki \(f_A \) i \(q_{BM} \) (wyniki przedstawiono w tablicy 2.7.2).

W RSTO 01 stosuje się zwiększające współczynniki ze względu na szerokości pasa ruchu oraz pochylenia, które nie występują w katalogu polskim. Okazuje się, że parametry techniczne drogi mogą znacząco wpłynąć na ruch obliczeniowy. W tablicy 2.7.2 przedstawiono współczynniki przeliczeniowe pojazdu z uwzględnieniem niekorzystnych, z punktu widzenia ruchu obliczeniowego, parametrów technicznych drogi.

Tablica 2.7.2 Współczynniki przeliczeniowe pojazdów obliczone dla katalogu niemieckiego

<table>
<thead>
<tr>
<th>Klasa drogi</th>
<th>Wsp. liczby osi (f_a)</th>
<th>Wsp. przel. osi (q_{BM})</th>
<th>Wsp. przel. pojazdu (f_a q_{BM})</th>
<th>przyjęty wsp. szerokości pasa (f_2)</th>
<th>przyjęty wsp. pochylenia niwelety (f_3)</th>
<th>Max. wsp. przel. pojazdu (f_a q_{BM} f_2 f_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autostrady</td>
<td>4,2</td>
<td>0,26</td>
<td>1,092</td>
<td>(f_2(3,75m)=1,0)</td>
<td>(f_3(2%)=1,02)</td>
<td>1,114</td>
</tr>
<tr>
<td>Drogi krajowe</td>
<td>3,7</td>
<td>0,2</td>
<td>0,740</td>
<td>(f_2(3,5m)=1,1)</td>
<td>(f_3(4%)=1,05)</td>
<td>0,855</td>
</tr>
<tr>
<td>Pozostałe drogi</td>
<td>3,1</td>
<td>0,18</td>
<td>0,558</td>
<td>(f_2(2,75m)=1,4)</td>
<td>(f_3(5%)=1,09)</td>
<td>0,851</td>
</tr>
</tbody>
</table>

Aby porównać metodą niemiecką i polską przeprowadzono następującą analizę: wprowadzono pojęcie współczynnika przeliczeniowego pojazdu ciężkiego \(R \) na oś standardową 100 kN. Według metody niemieckiej współczynnik \(R \) można obliczyć ze wzoru:

\[
R = f_A \cdot q_{BM}
\]
(2.7.5)

gdzie: \(R \) - współczynnik przeliczeniowy pojazdu ciężkiego (o masie ponad 3,5 tony) na oś standardową 100 kN, \(f_A \) i \(q_{BM} \) jak we wzorze (2.7.1). Jeżeli uwzględnia się parametry techniczne drogi to współczynnik \(R \) w metodzie niemieckiej określany będzie wzorem:

\[
R = f_A \cdot q_{BM} \cdot f_2 \cdot f_3
\]
(2.7.6)

gdzie oznaczenia jak we wzorze (2.7.1). Współczynniki niemieckie \(R \) zostały podane w tablicy 2.7.2.

Według metody polskiej współczynnik \(R \) można obliczyć bazując na informacji o strukturze ruchu otrzymanej z Generalnego Pomiaru Ruchu 2010 [17] dla autostrad, dróg krajowych i wojewódzkich można przeliczyć współczynniki...
podane dla trzech kategorii pojazdów na ogólny współczynnik przeliczeniowy pojazdu R, zgodnie ze wzorem:

\[R = u_1 \cdot r_1 + u_2 \cdot r_2 + u_3 \cdot r_3 \]

(2.7.7)

gdzie:

\(r_1, r_2, r_3 \) – współczynniki przeliczeniowe według polskiego katalogu, odpowiednio \(r_1=0,109, r_2=1,245 \) lub \(r_2=1,950, r_3=0,594 \).

\(u_1, u_2, u_3 \) – udział pojazdów danej kategorii w ruchu ciężkim, odpowiednio \(u_1 \) – udział samochodów ciężarowych bez przyczep, \(u_2 \) – udział samochodów ciężarowych z przyczepami, \(u_3 \) – udział autobusów. Wartości \(u \) zostały podane w tablicy 2. w oparciu o dane z generalnego pomiaru ruchu 2010 [17].

Tablica 2.7.3 Zestawienie współczynników przeliczeniowych według KTKNPiP oraz RSTO 01.

<table>
<thead>
<tr>
<th>Droga</th>
<th>Autostrady</th>
<th>Drogi krajowe</th>
<th>Drogi wojewódzkie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kategoria pojazdu</td>
<td>C</td>
<td>C+P</td>
<td>A</td>
</tr>
<tr>
<td>Udział kategorii pojazdu w ruchu ciężkim (wg GPR'10)</td>
<td>15%</td>
<td>83%</td>
<td>2%</td>
</tr>
<tr>
<td>Współczynnik przeliczeniowy kategorii pojazdu wg KTKNPiP z 1997r.</td>
<td>0,109</td>
<td>1,245<sup>(1)</sup></td>
<td>1,950<sup>(2)</sup></td>
</tr>
<tr>
<td>Współczynnik przeliczeniowy pojazdów wg KTKNPiP z 1997r.</td>
<td>1,169<sup>(1)</sup></td>
<td>0,975<sup>(1)</sup></td>
<td>0,751<sup>(1)</sup></td>
</tr>
<tr>
<td>Proponowane współczynniki przeliczeniowe kategorii pojazdu</td>
<td>0,35</td>
<td>1,35</td>
<td>0,90</td>
</tr>
<tr>
<td>Współczynники przeliczeniowe pojazdu R</td>
<td>1,353</td>
<td>0,923</td>
<td>0,628</td>
</tr>
<tr>
<td>Współczynnik przeliczeniowy pojazdów wg RSTO 01</td>
<td>1,092</td>
<td>0,740</td>
<td>0,558</td>
</tr>
<tr>
<td>Max współczynnik przeliczeniowy pojazdów wg RSTO 01<sup>(3)</sup></td>
<td>1,114</td>
<td>0,855</td>
<td>0,851</td>
</tr>
</tbody>
</table>

⁽¹⁾ Przy założeniu, że udział pojazdów o nacisku 115 kN/oś nie przekracza 8%

⁽²⁾ Przy założeniu, że udział pojazdów o nacisku 115 kN/oś zawiera się w przedziale 8% do 20%

⁽³⁾ Z uwzględnieniem niekorzystnych parametrów technicznych drogi (wg Tablicy 2.7.2)

Z tablicy 2 wynika, że współczynnik przeliczeniowy pojazdów R obliczony według KTKNPiP przy przyjęciu \(r_2=1,950 \) jest wyższy niż współczynnik wynikający z katalogu niemieckiego, dla autostrad i dróg krajowych nawet przy przyjęciu niekorzystnych parametrów technicznych drogi. W przypadku przyjęcia współczynnika \(r_2=1,245 \) otrzymuje się zbliżone wartości \(R \) dla metod polskiej i niemieckiej, natomiast dla dróg krajowych i wojewódzkich współczynnik \(R \) jest wyraźnie wyższy w metodzie polskiej.
Proponowane przez zespół Politechniki Gdańskiej współczynniki przeliczeniowe są o 4% wyższe niż maksymalne współczynniki niemieckie dla autostrad, 8% wyższe niż dla dróg krajowych. W przypadku dróg niższej kategorii niż drogi krajowe wartość proponowanego współczynnika w odniesieniu do podanego w tablicy 2.7.3 maksymalnego współczynnika przeliczeniowego wg RSTO 01 jest niższa, lecz różnica ta wynika z dość niekorzystnych parametrów technicznych drogi, jakie zostały przyjęte.

W celu porównania, dla pomiarów przeprowadzonych na polskich stacjach ważenia pojazdów w ruchu wyznaczono średnią liczbę osi przypadającą na pojazd ruchu ciężkiego oraz średnie obciążenie osi w pojazdzie. Wyniki zestawiono ze współczynnikami podanymi w RSTO 01 [12] i zamieszczono w tablicy 2.7.4.

<table>
<thead>
<tr>
<th>Współczynniki wyznaczone dla polskich dróg</th>
<th>f_a</th>
<th>q_{bm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>DK46</td>
<td>4,28</td>
<td>0,20</td>
</tr>
<tr>
<td>DK11</td>
<td>4,05</td>
<td>0,14</td>
</tr>
<tr>
<td>DK4</td>
<td>3,87</td>
<td>0,21</td>
</tr>
<tr>
<td>DK1</td>
<td>4,16</td>
<td>0,17</td>
</tr>
<tr>
<td>A2</td>
<td>4,47</td>
<td>0,21</td>
</tr>
<tr>
<td>Współczynniki podane dla dróg niemieckich [12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autostrady</td>
<td>4,2</td>
<td>0,26</td>
</tr>
<tr>
<td>Drogi krajowe</td>
<td>3,7</td>
<td>0,2</td>
</tr>
<tr>
<td>pozostałe</td>
<td>3,1</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Jak widać, ruch zmierzony na polskich drogach pod względem oddziaływania na nawierzchnię drogową jest podobny jak na drogach niemieckich. Struktura ruchu ciężkiego, której miarą jest średnia liczba osi przypadająca na pojazd ciężarowy f_a, na polskich drogach krajowych jest podobna jak dla niemieckich autostrad. Wynika to prawdopodobnie z tego, że sieć polskich autostrad nie jest tak rozbudowana jak w Niemczech, przez co pojazdy z największą liczbą osi (kategoria C+P) poruszają się po drogach krajowych. Średnie oddziaływanie osi pojazdu ciężarowego na nawierzchnię wyrażone liczbą q_{bm} na analizowanych punktach pomiarowych DK46, DK4 i A2 odpowiada oddziaływaniu dla dróg krajowych w Niemczech, z kolei oddziaływanie na DK1 i DK 11 w przybliżeniu odpowiadają oddziaływaniu na niemieckich drogach wojewódzkich.
2.7.2. Współczynniki przeliczeniowe zamieszczone w brytyjskiej instrukcji do projektowania nawierzchni.

Ruch obliczeniowy według metody brytyjskiej [14] wyrażony jest za pomocą liczby osi równoważnych 80 kN (T), podawanej w milionach (msa –million standard axles). Nie wprowadzono kategorii ruchu, tak więc grubość konstrukcji nawierzchni dobiera się na podstawie nomogramów. Roczne obciążenie ruchem (T₁) wylicza się osobno dla pojazdów i-tej klasy lub opcjonalnie i-tej kategorii za pomocą wzoru:

\[T₁ = 365 \cdot F \cdot G \cdot W \cdot 10^{-6} \text{ msa} \] (2.7.8)

następnie całkowity ruch obliczeniowy T podaje się jako:

\[T = Y \cdot P \cdot \Sigma T₁ \text{ msa} \] (2.7.9)

gdzie:
F – średnioroczny ruch dobowy pojazdów ciężkich na początku okresu eksploatacji,
G – wskaźnik wzrostu ruchu,
W – współczynnik „zużycia nawierzchni" (ang. "wear factor") danej klasy lub kategorii pojazdu, odpowiadający współczynnikowi przeliczeniowemu,
P – procent pojazdów na najbardziej obciążonym pasie drogi,
Y – okres obliczeniowy w latach.

WIM. Brytyjczycy argumentują zastosowanie takich współczynników bezpieczeństwa przede wszystkim możliwością wzrostu ciężarów pojazdów w przyszłości (w Wielkiej Brytanii zaleca się projektowanie nawierzchni na 40 lat!).

Tablica 2.7.5. Brytyjskie współczynniki zużycia oraz pomiary ze stacji ważenia WIM według [18].

<table>
<thead>
<tr>
<th>Pojazd</th>
<th>Klasa pojazdu</th>
<th>Kategoria pojazdu</th>
<th>Współczynniki zużycia nawierzchni ok 80 kN</th>
<th>Współczynniki zużycia nawierzchni ok 100 kN</th>
<th>Średnia z WIM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>autobusy</td>
<td>PSV</td>
<td>0.4</td>
<td>0.6</td>
<td>0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>bez przyczepy 2-osiowe</td>
<td>G 1</td>
<td>0.4</td>
<td>0.6</td>
<td>0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>bez przyczepy 3-osiowe</td>
<td>G 2</td>
<td>2.3</td>
<td>3.4</td>
<td>1.27</td>
<td>0.70</td>
</tr>
<tr>
<td>przegubowe 3-osiowe</td>
<td>G 2</td>
<td>1.7</td>
<td>2.5</td>
<td>1.24</td>
<td>0.51</td>
</tr>
<tr>
<td>bez przyczepy 4-osiowe</td>
<td>G 2</td>
<td>3.0</td>
<td>4.6</td>
<td>2.28</td>
<td>0.93</td>
</tr>
<tr>
<td>przegubowe 4-osiowe</td>
<td>G 2</td>
<td>1.7</td>
<td>2.5</td>
<td>1.24</td>
<td>0.51</td>
</tr>
<tr>
<td>przegubowe 5-osiowe</td>
<td>G 2</td>
<td>2.9</td>
<td>4.4</td>
<td>2.18</td>
<td>0.89</td>
</tr>
<tr>
<td>przegubowe 6-osiowe</td>
<td>G 2</td>
<td>3.7</td>
<td>5.6</td>
<td>2.79</td>
<td>1.14</td>
</tr>
</tbody>
</table>

* WIM - ważenie pojazdów w ruchu - współczynniki obliczone metodą 4-tej potęgi z 15 punktów pomiarowych zlokalizowanych na sieci dróg brytyjskich i podane w [18]

Okazuje się, że średnie współczynniki równoważności otrzymane z ważenia pojazdów w ruchu wyznaczone w Wielkiej Brytanii mają zbliżone wartości do współczynników obliczonych dla danych z dróg polskich, przedstawionych w punkcie 2.3.

W celu porównania brytyjskich współczynników zużycia nawierzchni ze współczynnikami otrzymanymi z katalogów polskiego i niemieckiego, przeliczono je stosując wzór:

\[R = W \cdot \left(\frac{80}{100} \right)^4 \cdot \left(W_{OGV1+PSV} \cdot u_{OGV1+PSV} + W_{OGV2} \cdot u_{OGV2} \right) \cdot \left(\frac{80}{100} \right)^4 \] (2.7.10)

gdzie:
- \(R \) – współczynnik przeliczeniowy pojazdu wyrażony w osiach 100kN,
- \(W \) – współczynnik przeliczeniowy pojazdu (współczynnik zużycia nawierzchni) wyrażony w osiach 80kN [14],
- \(W_{OGV1+PSV} \), \(W_{OGV2} \) - współczynniki zużycia nawierzchni dla odpowiednich kategorii pojazdów, wyrażone w osiach 80kN, wartości współczynników podano w tablicy 3,
u – średni udział pojazdów danej kategorii na drogach Brytyjskich, podany w HD24/06 [14], $u_{OGV1+PSV} =35\%$, $u_{OGV2} =65\%$ dla autostrad i dróg ekspresowych oraz $u_{OGV1+PSV} =62\%$, $u_{OGV2} =38\%$ dla dróg krajowych.

Tablica 2.7.6. Zestawienie średniego obciążenia równoważnego pojazdów ruchu ciężkiego wg metod brytyjskiej, niemieckiej i polskiej

<table>
<thead>
<tr>
<th>Metoda</th>
<th>Autostrady</th>
<th>Drogi krajowe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>istniejące</td>
<td>nowe</td>
</tr>
<tr>
<td>Brytyjska instrukcja do projektowania nawierzchni [14]</td>
<td>0,885</td>
<td>1,315</td>
</tr>
<tr>
<td>Katalog niemiecki RSTO 01 [12]</td>
<td>1,092</td>
<td>0,740</td>
</tr>
<tr>
<td>Katalog polski KTKNPIP [16]</td>
<td>1,169$^{(1)}$</td>
<td>1,754$^{(2)}$</td>
</tr>
<tr>
<td>Współczynniki proponowane w niniejszym opracowaniu</td>
<td>1,353</td>
<td>0,923</td>
</tr>
</tbody>
</table>

(1) Przy założeniu, że udział pojazdów o nacisku 115 kN/oś nie przekracza 8%
(2) Przy założeniu, że udział pojazdów o nacisku 115 kN/oś zawiera się w przedziale 8% do 20%

Obliczenia ruchu wykonane według metody brytyjskiej dają mniejszą wartość ruchu obliczeniowego niż gdyby były wykonane wg katalogu polskiego lub niemieckiego, jeżeli projektuje się konstrukcję drogi sieci istniejącej. Ruch obliczeniowy wyznaczony według metody polskiej jest największy dla przypadku, gdy udział pojazdów o nacisku 115 kN zawiera się w przedziale 8% do 20%.

2.7.3. Austriackie współczynniki do wyznaczania ruchu obliczeniowego

Konstrukcję nawierzchni drogowej według katalogu austriackiego [13] dobiera się w zależności od obciążenia ruchem równoważnym. Wyróżnia się siedem klas obciążenia od VI – ruch najlżejszy do S – ruch najcięższy. Aby ustalić odpowiednią klasę należy obliczyć miarodajne obciążenie ruchem BNLW, które wyrażone jest liczbą przejazdów ośi o standardowym ciężarze 100 kN:

$$BNLW = NLW_{dzienne} \cdot R \cdot V \cdot S \cdot 365 \cdot n \cdot z$$ \hspace{1cm} (2.7.11)

gdzie:
$NLW_{dzienne}$ – dobowa liczba przejazdów ośi standardowych 100 kN dla całego przekroju w chwili oddania drogi do ruchu
R – Współczynnik podziału ruchu ciężkiego ze względu na kierunek ruchu (0,5 przy równoogniennym podziale ruchu ciężkiego w obu kierunkach jazdy),
V – współczynnik uwzględniający rozkład ruchu ciężkiego na większą liczbę pasów ruchu w danym kierunku ($V=1$ przy 1, względnie 2 pasach ruchu, $V=0,9$ przy 3 i więcej pasach ruchu w danym kierunku),
S – współczynnik uwzględniający rozkład śladu koła w obrębie pasa ruchu, dla typowych szerokości pasa ruchu przyjmuje wartości: dla 3,75 m $S=0,75$, dla 3,5 m $S=0,80$, dla 3,0 m $S=0,9$, dla 2,75 m $S=1,0$,
n – okres na jaki projektuje się nawierzchnię w latach (najczęściej 20 lat dla nawierzchni asfaltowych lub z kostki brukowej, 30 lat dla nawierzchni z betonu
z – współczynnik wzrostu ruchu w kolejnych latach, przy uwzględnieniu rocznego wskaźnika przyrostu p[%]:

\[z = \frac{q^n - 1}{n(q - 1)} \]

gdzie: \(q = 1 + \frac{p}{100} \).

Dobową liczbę przejazdów osi 100 kN - NLW\(_{dzienne}\) oblicza się w zależności od znajomości struktury rodzajowej pojazdów:

- gdy znany jest średnie, roczne natężenie ruchu JDTV\(_i\) kategorii pojazdów w chwili oddania do ruchu:

\[NLW_{dzienne} = \sum_i JDTV_i \cdot \tilde{A}_i \]

gdzie:

\(\tilde{A}_i \) – średnia wartość współczynnika równoważności obciążenia dla danej kategorii pojazdów, zgodnie z tablicą 2.7.7,

JDTLV\(_i\) – roczne, średnie natężenie ruchu pojazdów danej kategorii.

- gdy brak jest wyników z obliczeń ruchu z podziałem na kategorie pojazdów:

\[NLW_{dzienne} = JDTV_{cal} \cdot \tilde{A}_{JDTLV} \]

gdzie:

\(\tilde{A}_{JDTV} \) – średnia wartość współczynnika równoważności obciążenia dla odpowiedniej kategorii drogi zgodnie z tablicą 2.7.8.

JDTLV\(_{cal}\) – roczne, średniodobowe natężenie ruchu ciężkiego.

Kategorie pojazdów ruchu ciężkiego wyszczególnione w katalogu austriackim [13] są niemal identyczne jak w katalogu polskim z 1997r., odstępstwo stanowią autobusy, które w katalogu austriackim podzielono dodatkowo na 3 kategorie. Można zatem porównać polskie współczynnik przeliczeniowe \(r \), ze współczynnikami austriackimi \(\tilde{A}_i \) (tablica 2.7.7). Należy jednak pamiętać, że w Austrii stosuje się współczynnik szerokości pasa ruchu \(S \leq 1 \), w związku z czym dla dróg o wyższych klasach technicznych końcowa wartość ruchu cementowego).
obliczeniowego będzie niższa, niż gdyby była liczona dla współczynników podanych w Tablicach 2.7.7 i 2.7.8 (zależnie od szerokości pasa ruchu).

Tablica 2.7.7. Wartości współczynnika równoważności obciążenia pojazdów różnych kategorii podane w katalogu austriackim [13], oraz w polskim [16].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\tilde{A}</td>
<td>r</td>
</tr>
<tr>
<td>Samochód ciężarowy bez przyczepy</td>
<td>0,7</td>
<td>0,109</td>
</tr>
<tr>
<td>Samochód ciężarowy z przyczepą wzgl. ciągnik siodłowy z nacząpą</td>
<td>1,2</td>
<td>1,245$^{(1)}$ 1,950$^{(2)}$</td>
</tr>
<tr>
<td>Autokar / Autobus</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Autobus miejski (transport publiczny)</td>
<td>0,8</td>
<td>0,594</td>
</tr>
<tr>
<td>Autobus miejski przecubowy</td>
<td>1,4</td>
<td></td>
</tr>
</tbody>
</table>

$^{(1)}$ Przy założeniu, że udział pojazdów o nacisku 115 kN/oś nie przekracza 8%
$^{(2)}$ Przy założeniu, że udział pojazdów o nacisku 115 kN/oś zawiera się w przedziale 8% do 20%

Tablica 2.7.8. Współczynnik równoważności obciążenia pojazdu wg katalogu austriackiego \tilde{A}_{JDTV} oraz według katalogu polskiego R dla różnych kategorii dróg

<table>
<thead>
<tr>
<th>Kategoria drogi</th>
<th>\tilde{A}_{JDTV}</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autostrady</td>
<td>1,0</td>
<td>1,169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,754</td>
</tr>
<tr>
<td>Pozostałe drogi</td>
<td>0,9</td>
<td>0,975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,437</td>
</tr>
</tbody>
</table>

Zgodnie z porównaniem przedstawionym w tablicy 2.7.7 można stwierdzić, że obecny polski współczynnik przeliczeniowy dla samochodów ciężarowych bez przyczep r_1 jest aż 7-krotnie niższy niż odpowiadający mu współczynnik austriacki \tilde{A}_1. Z kolei wielkość polskiego współczynnika dla samochodów ciężarowych z przyczepą r_2 jest większa od odpowiadającego mu austriackiego współczynnika $\tilde{A}_2=1,2$. Współczynniki \tilde{A}_{JDTV} podane w tablicy 2.7.8 są odpowiednikami współczynników polskich, niemieckich i brytyjskich zestawionych w tablicy 4. Z porównania przedstawionego w tablicy 2.7.6 wynika, że metoda austriacka daje mniejszy ruch obliczeniowy niż metoda polska przy tych samych warunkach.

2.7.4. Francuska metoda wyznaczania ruchu obliczeniowego

We Francji pojazdy ciężarowe definiuje się jako te, których masa przekracza 3,5 tony (dawniej było to 5 ton) i nie dzieli się ich na kategorie. Sposób określanie ruchu dla celów projektowych opisano w normie francuskiej NF P 98-082 [4]. Ruch pojazdów ciężarowych wyrażony jest jako średnioroczna dobowa liczba pojazdów ciężarowych (MJA) na najbardziej obciążonym pasie ruchu. Jeżeli nie jest znany rozkład ruchu pojazdów ciężarowych na pasy można przyjąć:
\[TC = 365 \cdot T \cdot C \]
(2.7.15)

T – średnioroczny dobowy ruch pojazdów ciężarowych z uwzględnieniem liczby pasów ruchu, a także szerokości pasów ruchu w przypadku drogi jednojezdniowej, dwupasowej
C – skumulowany współczynnik zależny od okresu eksploatacji D i geometrycznego, rocznego wzrostu ruchu τ: \(C = \frac{(1+\tau)D-1}{\tau} \)

Z uwagi na liczbę pojazdów ciężarowych wyszczególnione zostały klasy ruchu (tablica 2.7.9). Na podstawie klas ruchu \(T_i \) wyznacza się m.in. współczynnik agresywności pojazdów CAM.

<table>
<thead>
<tr>
<th>Klasa ruchu</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T3+</th>
<th>T2</th>
<th>T2+</th>
<th>T1</th>
<th>T1+</th>
<th>T0</th>
<th>T0+</th>
<th>TS</th>
<th>TS+</th>
<th>TEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJA</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>85</td>
<td>150</td>
<td>200</td>
<td>300</td>
<td>500</td>
<td>750</td>
<td>1200</td>
<td>2000</td>
<td>3000</td>
<td>5000</td>
</tr>
</tbody>
</table>

Konstrukcja nawierzchni drogowej wymiarowana jest na liczbę osi obliczeniowych NE. Oś obliczeniowa składa się z dwóch par kół bliźniaczych o ciśnieniu kontaktowym 0,662 MPa i rozstawie 37,5 cm, i jest obciążona ciężarem 130 kN [11]. Liczba NE opisana jest wzorem:

\[NE = TC_i \cdot CAM \]
(2.7.16)

gdzie:
TCi – całkowity obliczeniowy ruch pojazdów ciężarowych,
CAM – współczynnik skumulowany agresywności ruchu pojazdów, będący funkcją:

- wielkości początkowej ruchu
- rozkładu typów i nacisków osi w pojazdach,
- rodzaju konstrukcji nawierzchni.

Tablica 2.7.10. Klasyfikacja obciążenia drogi w zależności od klasy drogi (miliony osi standardowych) [11]

<table>
<thead>
<tr>
<th>VRS</th>
<th>TC130</th>
<th>TC230</th>
<th>TC330</th>
<th>TC430</th>
<th>TC530</th>
<th>TC630</th>
<th>TC730</th>
<th>TC830</th>
</tr>
</thead>
<tbody>
<tr>
<td>mln osi 130 kN</td>
<td>0,5</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>38</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VRNS</th>
<th>TC120</th>
<th>TC220</th>
<th>TC320</th>
<th>TC420</th>
<th>TC520</th>
<th>TC620</th>
<th>TC720</th>
<th>TC820</th>
</tr>
</thead>
<tbody>
<tr>
<td>mln osi 130 kN</td>
<td>0,2</td>
<td>0,5</td>
<td>1,5</td>
<td>2,5</td>
<td>6,5</td>
<td>17,5</td>
<td>43,5</td>
<td></td>
</tr>
</tbody>
</table>

Współczynnik CAM definiowany jest stosunek zsumowanej agresywności osi pojazdów do liczby pojazdów ciężarowych. Szczegółowy opis metody jego obliczania podany jest w aneksie 5 opracowania [3]. Aby obliczyć współczynnik
CAM konieczna jest znajomość rozkładu nacisków osi pojazdów na drodze np. ze stacji ważenia w ruchu WIM. W przypadku braku takich informacji CAM można przyjąć według tablicy 2.7.11. Dobór współczynnika zależy od klasy drogi oraz od konstrukcji nawierzchni dla klas ruchu od T2 do TS.

Tablica 2.7.11. Współczynnik CAM w zależności od klasy ruchu oraz typu nawierzchni [7]

| Warstwy i nawierzchnie dla ruchu średniego i wysokiego od T2 do TS | CAM | Warstwy bitumiczne nawierzchni kompozytowych lub odwróconych | Nawierzchnie w których grubość warstw bitumicznych przekracza 20cm | Warstwy niezwiązane oraz podłoże gruntové | CAM |
|---|---|---|---|---|
| Warstwy z materiałów związanych spojewem hydraulicznym oraz z betony cementowego | 0,8 | 1 | 1,3 |
| Warstwy z materiałów związanych spojewem hydraulicznym oraz z betony cementowego | 0,8 | 1 | 1,3 |

Warto zwrócić uwagę na fakt, że współczynnik CAM może przyjmować różne wartości dla warstw z których wykonano nawierzchnie i tak na przykład dla nawierzchni kompozytowej (polski odpowiednik nawierzchni półsztywnej) CAM = 1,3 dla podbudowy związanej cementem, natomiast CAM = 0,8 dla warstw bitumicznych. Oznacza to, że każdą z tych warstw projektuje się na inny ruch obliczeniowy. Współczynnik CAM wyznaczony jest dla osi standardowej 130kN. Nie przedstawiono porównania francuskich współczynników przeliczeniowych CAM z ich odpowiednikami podanymi w innych katalogach, gdyż ruch ciężki we Francji ma inną charakterystykę niż w pozostałych krajach. Dopuszczalny limit obciążenia osi we Francji wynosi 130 kN/oś, podczas gdy w pozostałych krajach 115 kN/oś, w związku z czym francuskie współczynniki CAM będą miały wyższą wartość. Oprócz większych limitów nacisków osi znaczenie ma również metoda, według której je obliczono. Metoda Francuska prowadzi do otrzymania większych współczynników równoważności obciążenia osi niż metoda AASHTO oraz jej uproszczenie – metoda 4-tej potęgi, które to były wykorzystywane do obliczenia współczynników przeliczeniowych w Wielkiej Brytanii i Niemczech.

2.7.5. Wnioski wynikające z porównania współczynników przeliczeniowych stosowanych w Niemczech, Wielkiej Brytanii, Austrii, Francji i Polsce

Obecnie stosowane, polskie współczynniki przeliczeniowe pojazdów kategorii C (samochody ciężarowe bez przyczep) \(r_1 = 0,109 \) są niższe niż współczynniki stosowane w Wielkiej Brytanii i Austrii. Proponowany, nowy współczynnik
przeliczeniowy pojazdów kategorii C bliższy jest jego brytyjskim i austriackim odpowiednikom.

Współczynnik przeliczeniowy pojazdów kategorii C+P z KTKNPiP z 1997r. \(r_2 = 1,245 \) bliski jest współczynnikom podanym dla Austrii i dla dróg istniejących Wielkiej Brytanii, natomiast współczynnik przeliczeniowy \(r_2 = 1,95 \) jest znacznie wyższy niż odpowiadające mu współczynniki przeliczeniowe austriackie i brytyjskie.

Współczynniki przeliczeniowe autobusów \(r_2 = 0,594 \) bliskie są współczynnikom austriackim podanym dla autokarów, niższe są natomiast niż współczynniki podane dla autobusów miejskich z katalogu austriackiego oraz niż współczynniki podane dla pojazdów typu PSV ("public service vehicles") w brytyjskiej instrukcji do projektowania konstrukcji.

Średnia wartość współczynników równoważności obciążenia osi obliczonych metodą 4-tej potęgi podana dla dróg brytyjskich jest zbliżona do średnich wartości obliczonych dla dróg polskich, podanych w punkcie 2.3 Brytyjskie współczynniki przeliczeniowe podano jako średnią wartość współczynników równoważności obciążenia osi przemnożoną przez współczynnik bezpieczeństwa, wprowadzony przede wszystkim z uwagi na możliwy wzrost ciężarów pojazdów w przyszłości. Wielkość współczynnika bezpieczeństwa wynosi 1,3 dla dróg sieci istniejącej i 2.0 dla dróg nowoprojektowanej sieci, należy przy tym pamiętać, że okres eksploatacji nawierzchni nowoprojektowanych w Wielkiej Brytanii na ogół wynosi 40 lat.

Proponowane przez autorów opracowania nowe współczynniki przeliczeniowe dla dróg polskich są zbliżone do współczynników podanych w niemieckim katalogu RSTO 01.

Na podstawie analizy metody francuskiej można wywnioskować, że oddziaływanie pojazdów ruchu ciężkiego ma inny wymiar w przypadku warstw bitumicznych i warstw związanych cementem. Porównanie współczynników przeliczeniowych podanych w katalogu francuskim ze współczynnikami stosowanymi w innych krajach jest trudne, ponieważ limity obciążeń osi pojazdów ruchu ciężkiego są we Francji wyższe, przez co oddziaływanie pojazdów na nawierzchnię, wyrażone współczynnikami CAM, również jest wyższe.

2.8. Przyjęcie okresu projektowego

Obecnie okres projektowy, dla którego obliczono grubości katalogowych konstrukcji nawierzchni wynosi 20 lat. Na świecie obserwuje się tendencję do wydłużenia okresu eksploatacji konstrukcji nawierzchni dróg o znaczeniu krajowym lub międzynarodowym do 30, a nawet 40 lat. Na podstawie studiów
literatury określono, że w poszczególnych krajach przyjmowany do projektowania okres eksploatacji nawierzchni wynosi:

- Dla **Francji** w zależności od znaczenia drogi:
 - dla dróg sieci strukturalnych VRS (fr. „Voies du Résau Structurant”), w skład których wchodzą autostrady, drogi ekspresowe i krajowe, okres eksploatacji wynosi **30 lat**,
 - dla dróg sieci niestrukuralnych VRNS (fr. „Voies du Résau Non Structurant”), w skład których wchodzą wszystkie pozostałe drogi, okres eksploatacji wynosi **20 lat**. [11]

- Dla **Niemiec** dopuszcza się różne okresy eksploatacji, jednak najczęściej wynosi on **30 lat** [12].

- W **Austrii** okres projektowy konstrukcji nawierzchni podatnych z reguły wynosi **20 lat** [13].

- W **Wielkiej Brytanii** standardowo przyjmuje się okres projektowy równy **40 lat**. Dopuszcza się jednak inne okresy eksploatacji, o ile są one uzasadnione ekonomicznie [14].

Za zmianą okresu obliczeniowego z 20 do 30 lat przemawiają czynniki ekonomiczne. Taniej jest wykonać grubszą nawierzchnię, której nie trzeba będzie przebudowywać przez okres dłuższy o 50% niż wykonać cieńszą nawierzchnię, która będzie wymagać przebudowy po krótszym czasie. Dla dróg mocno obciążonych oprócz kosztów związanych z samą przebudową konstrukcji należy doliczyć koszty związane z utrudnieniami ruchu i stratami transportowymi podczas przebudowy. Zespół Politechniki Gdańskiej sugeruje, aby przyjąć następujące okresy eksploatacji nawierzchni:

- Dla autostrad i dróg ekspresowych **30 lat**
- Dla pozostałych dróg **20 lat**

2.9. Propozycja zmian w klasyfikacji ruchu do projektowania nawierzchni

Obecny podział na ruch kategorie przedstawiono w wariantach dla ruchu dziennego i dla ruchu całkowitego. Ponieważ przewiduje się wprowadzenie różnych okresów projektowych nawierzchni nowy podział dotyczyć będzie ruchu przypadającego na cały okres projektowy nawierzchni. Zespół autorski sugeruje zmiany w podziale ruchu na kategorie w obrębie ruchu ciężkiego. Dokonanie zmian ma na celu wprowadzenie bardziej równomiernego niż dotychczas rozłożenia grubości konstrukcji nawierzchni między kolejnymi kategoriami ruchu. Dotychczasowy podział ruchu na kategorie przedstawiono w tablicy 2.9.1 oraz w formie graficznej na rysunku 2.9.2, natomiast propozycję nowego podziału zamieszczono w tablicy 2.9.2 i na rysunku 2.9.3. W celu informacyjnym w tablicach 2.9.1 i 2.9.2 zamieszczono informację o ruchu dobowym przy założeniu
jednostajnego (liniowego) wzrostu ruchu w całym okresie eksploatacji. Ruch dobowy przedstawiono dla okresu projektowego 20 i 30 lat. Dodatkowo na rysunku 2.9.1 przedstawiono obecny podział ruchu w zestawieniu z podziałem ruchu obliczeniowego do projektowania nawierzchni w wybranych katalogach krajów europejskich. Ruch przedstawiony na rysunku 2.9.3 został przeliczony i podany przez autorów dla osi 100kN w całym okresie eksploatacji.

Tablica 2.9.1 Obecny podział na kategorie ruchu. Ruch dobowy przedstawiono przy założeniu równomiernego (liniowego) wzrostu ruchu w okresie 20 lub 30 lat.

<table>
<thead>
<tr>
<th>Kategoria ruchu</th>
<th>Ruch dobowy przy okresie eksploatacji [osi 100kN/dobę]</th>
<th>Ruch całkowity [mln osi 100kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 lat</td>
<td>30 lat</td>
</tr>
<tr>
<td>KR1</td>
<td>0 do 12</td>
<td>0 do 8</td>
</tr>
<tr>
<td>KR2</td>
<td>12 do 70</td>
<td>8 do 47</td>
</tr>
<tr>
<td>KR3</td>
<td>70 do 335</td>
<td>47 do 228</td>
</tr>
<tr>
<td>KR4</td>
<td>335 do 1000</td>
<td>228 do 667</td>
</tr>
<tr>
<td>KR5</td>
<td>1000 do 2000</td>
<td>667 do 1333</td>
</tr>
<tr>
<td>KR6</td>
<td>pow. 2000</td>
<td>pow. 1333</td>
</tr>
</tbody>
</table>

Rysunek 2.9.1. Podział ruchu obliczeniowego na kategorie w wybranych katalogach krajów europejskich. Pola zanikające oznaczają, że nie określono górnej granicy kategorii ruchu.
Rysunek 2.9.2 Graficzne przedstawienie obecnego podziału ruchu na kategorie z naniesionymi grubościami warstw asfaltowych dla nawierzchni typu A (podbudowa z KŁSM) wg KTKNPiP z 1997 roku.

Tablica 2.9.2 Proponowany podział na kategorie ruchu. Ruch dobowy przedstawiono przy założeniu równomiernego (liniowego) wzrostu ruchu w okresie 20 lub 30 lat.

<table>
<thead>
<tr>
<th>Kategoria ruchu</th>
<th>Ruch dobowy przy okresie eksploatacji [osi 100kN/dobę]</th>
<th>Ruch całkowity [mln osi 100kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 lat</td>
<td>30 lat</td>
</tr>
<tr>
<td>KR1</td>
<td>0 do 12</td>
<td>0 do 8</td>
</tr>
<tr>
<td>KR2</td>
<td>12 do 70</td>
<td>8 do 47</td>
</tr>
<tr>
<td>KR3</td>
<td>70 do 335</td>
<td>47 do 228</td>
</tr>
<tr>
<td>KR4</td>
<td>335 do 1000</td>
<td>228 do 667</td>
</tr>
<tr>
<td>KR5</td>
<td>1000 do 3014</td>
<td>667 do 2009</td>
</tr>
<tr>
<td>KR6</td>
<td>3014 do 7534</td>
<td>2009 do 5023</td>
</tr>
<tr>
<td>KR7</td>
<td>pow. 7534</td>
<td>pow. 5023</td>
</tr>
</tbody>
</table>

Zdaniem autorów należy przesunąć górną granicę kategorii ruchu KR5 (i jednocześnie dolną granicę KR6) z 14,6 mln osi standardowych 100kN na 22 mln osi. Propozycja dotyczy również wprowadzenia dodatkowej kategorii KR7, której dolna granica ruchu wyniesie 55 mln osi standardowych. Podział przedstawiono w tablicy 2.9.2 i na rysunku 2.9.3.
Przedstawiona propozycja zmian w kategoriach ruchu obliczeniowego do projektowania nawierzchni ma charakter wstępny i może być korygowana w dalszym etapie prac nad Katalogiem.

2.10. Wpływ parametrów technicznych drogi na intensywność oddziaływania pojazdów ruchu ciężkiego na nawierzchnię drogową

2.10.1. Wpływ szerokości pasa ruchu

W metodach niemieckiej, austriackiej i częściowo we francuskiej uwzględniono powtarzalność obciążenia w śladzie koła, wprowadzając współczynnik uzależniony od szerokości pasa ruchu. Współczynniki szerokości pasa ruchu dla wybranych metod zestawiono w tablicy 2.10.1. Założeniem do wprowadzenia tego współczynnika jest teoria, według której na szerokich pasach ruchu poprzeczne rozłożenie torów ruchu pojazdów jest większe, co skutkuje wolniejszą degradacją nawierzchni. Z drugiej strony teoria może nie mieć pełnego przełożenia w rzeczywistości bowiem:

- istnieje wpływ łuków poziomych lub innych czynników mogących kierunkować tor jazdy pojazdów w pewnych obszarach pasa ruchu,
- szerokość pasów ruchu i poboczy na odcinkach drogi nie zawsze są jednakowe,
• poprzeczne rozłożenie torów jazdy zachodzi w początkowym okresie eksploatacji nawierzchni i zanika wraz z pojawieniem się kolein,
• na jezdniach o małej szerokości rozłożenie poprzeczne torów ruchu pojazdów zależy od wielkości natężenia ruchu i jest do niego odwrotnie proporcjonalne.

Tablica 2.10.1. Współczynniki szerokości pasa ruchu w wybranych metodach projektowania konstrukcji nawierzchni.

<table>
<thead>
<tr>
<th>Szerokość pasa ruchu [m]</th>
<th>Współczynnik szerokości pasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2,50</td>
<td>2,0</td>
</tr>
<tr>
<td>2,5 do 2,75</td>
<td>1,8</td>
</tr>
<tr>
<td>2,75 do 3,25</td>
<td>1,4</td>
</tr>
<tr>
<td>3,25 do 3,75</td>
<td>1,1</td>
</tr>
<tr>
<td>> 3,75</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Katalog niemiecki [12]

<table>
<thead>
<tr>
<th>Szerokość pasa ruchu [m]</th>
<th>Współczynnik szerokości pasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3,00</td>
<td>1,0</td>
</tr>
<tr>
<td>3,00</td>
<td>0,9</td>
</tr>
<tr>
<td>3,25</td>
<td>0,85</td>
</tr>
<tr>
<td>3,50</td>
<td>0,8</td>
</tr>
<tr>
<td>3,75</td>
<td>0,75</td>
</tr>
<tr>
<td>≥4,00</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Katalog austriacki [13]

<table>
<thead>
<tr>
<th>Szerokość pasa ruchu [m]</th>
<th>Współczynnik szerokości pasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2,5</td>
<td>2,0</td>
</tr>
<tr>
<td>od 2,5 do 3,0</td>
<td>1,5</td>
</tr>
<tr>
<td>≥ 3,0</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Katalog francuski [11]

W katalogu niemieckim wprowadzono również współczynnik pochylenia niwelety (tablica 2.10.2), jednak nie podano sposobu w jaki należałoby przyjmować spadek drogi, który na odcinku drogi może znacznie się zmieniać. Według katalogu niemieckiego współczynnik pochylenia niwelety dla najczęściej występujących na drogach spadków 0,5% - 6% może zwiększyć ruch obliczeniowy o maksymalnie 10%, jednak przy dużych pochyleniach: >10%, które występują dość rzadko, ruch obliczeniowy może wzrosnąć aż o 45%.

Zespół autorski PG rozważa wprowadzenie do projektowania współczynników zwiększających z uwagi na rozłożenie torów ruchu pojazdów dla pasów ruchu o małej szerokości na wzór metody francuskiej.
Tablica 2.10.2. Współczynniki pochylenia niwelety drogi stosowane w katalogu niemieckim [12]

<table>
<thead>
<tr>
<th>Pochylenie niwelety [%]</th>
<th>współczynnik pochylenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2</td>
<td>1</td>
</tr>
<tr>
<td>2 do 4</td>
<td>1,02</td>
</tr>
<tr>
<td>4 do 5</td>
<td>1,05</td>
</tr>
<tr>
<td>5 do 6</td>
<td>1,09</td>
</tr>
<tr>
<td>6 do 7</td>
<td>1,14</td>
</tr>
<tr>
<td>7 do 8</td>
<td>1,20</td>
</tr>
<tr>
<td>8 do 9</td>
<td>1,27</td>
</tr>
<tr>
<td>9 do 10</td>
<td>1,35</td>
</tr>
<tr>
<td>> 10</td>
<td>1,45</td>
</tr>
</tbody>
</table>

2.11. Ciśnienie kontaktowe na styku opony i nawierzchni do projektowania konstrukcji nawierzchni drogowych

Zagadnienie to zostało dość obszernie przedstawione między innymi w publikacji [20], w niniejszym opracowaniu zamieszczono zwięzły opis zagadnienia i przedstawiono najbardziej istotne czynniki wpływające na dobór ciśnienia kontaktowego do projektowania konstrukcji.

Obciążenie osi jest przekazywane na nawierzchnię poprzez powierzchnię styku koła z nawierzchnią. Jest to niezbędny element danych wejściowych, bez którego nie można wykonać obliczeń. Powierzchnia styku jest funkcją następujących wielkości:

- obciążenia przypadającego na koło,
- ciśnienie powietrza w ogumieniu,
- charakterystyki bieżnika opony i jej konstrukcji (radialna, diagonalna),
- prędkości jazdy,
- temperatury opony.

Powierzchnia styku opony z nawierzchnią w przybliżeniu przyjmuje kształt koła. Przykładowy ślad opony przedstawiono na rysunku 2.11.1. Wobec braku ścisłych unormowań formalnych powszechnej praktyką jest przyjmowanie śladu zastępczego opony jako koła o średnicy 32,5 cm.
Rysunek 2.11.1. Powierzchnia styku opony z nawierzchnią dla opony 315/80 R 22,5 o obciążeniu 25kN i ciśnieniu powietrza 830 kPa.[23]

Rozkład nacisków na powierzchni styku koła i nawierzchni jest skomplikowany i zmienia się w zależności od wyżej wymienionych czynników. Na rysunku 2.11.2 przedstawiono wykres naprężeń normalnych (ściskających) przekazywanych przez oponę na nawierzchnię. Generalnie kształt rozkładu naprężeń normalnych przypomina literę "n" dla niższych nacisków osi, natomiast dla wyższych nacisków literkę "m".

Rysunek 2.11.2 Macierz wykresów naprężeń normalnych przekazywanych na nawierzchnię poprzez oponę typu 315/80 R22,5; wzdłuż osi pionowej zmienia się obciążenie opony, wzdłuż osi poziomej zmianie ulega ciśnienie powietrza w oponie [21]
Standardowo do projektowania nawierzchni wykres naprężeń kontaktowych należy uprościć i przedstawić jako obciążenie równomiernie rozłożone. Przyjęcie takiego założenia, jak również przyjęcie śladu zastępczego jako koła o średnicy D, umożliwia wyprowadzenie wzoru zależności pomiędzy ciśnieniem kontaktowym a średnią śladu zastępczego:

\[q = \frac{4P}{\pi D^2} \]

gdzie:

- \(P \) - obciążenie koła [kN]
- \(q \) - ciśnienie kontaktowe na styku opony i nawierzchni [KPa]
- \(D \) - średnica śladu zastępczego [m]

Na podstawie analiz przedstawionych m.in. w [21] można stwierdzić, że przy stałym obciążeniu koła zależność średniego ciśnienia kontaktowego od ciśnienia powietrza w oponie zmienia się w przybliżeniu liniowo, zgodnie ze wzorem:

\[p_k = m \cdot p_o \]

gdzie

- \(p_k \) - średnie ciśnienie kontaktowe pomiędzy oponą a nawierzchnią
- \(p_o \) - ciśnienie powietrza w oponie
- \(m \) - współczynnik przyjmujący wartości od 0,65 do 1,15

Aby uwidocznić istotność ciśnienia kontaktowego na wymiarowanie konstrukcji nawierzchni zamieszczono wyniki analizy opublikowanej w artykule [20]. Wpływ ciśnienia kontaktowego na wymiarowanie konstrukcji nawierzchni przedstawiono w tablicy 2.11.1. Obliczenia konstrukcji nawierzchni wykazały, że wpływ ciśnienia kontaktowego jest bardzo duży, im jest ono większe tym mniejsza jest trwałość nawierzchni. Jak wynika z analizy, na zwiększenie ciśnienia kontaktowego bardziej wrażliwe są nawierzchnie cieńsze.

Na podstawie przeprowadzonej analizy można wyciągnąć następujące wnioski:

- Ciśnienia kontaktowe przyjmowane obecnie przez projektantów nawierzchni (650 kPa osi 100kN i 700 / 715 kPa osi 115kN) są w świetle przedstawionych danych zbyt małe.
- Wykres naprężeń przekazywanych przez oponę pojazdu ciężarowego na nawierzchnię jest skomplikowany i zależy od wielu czynników, w celach projektowych należy uprościć go do jednej wartości średniej.
- Ciśnienie kontaktowe na styku opony i nawierzchni zależy w sposób liniowy od ciśnienia powietrza w oponie i w przybliżeniu można przyjąć, że jest mu równe.
- Średnie ciśnienie kontaktowe przekazywane przez opony pojazdów ciężarowych na nawierzchnię drogową jest rzędu wielkości 800-900kPa. Zespół Politechniki Gdańskiej proponuje przyjęcie ciśnienia do projektowania nawierzchni na poziomie 850 kPa.
- Wpływ ciśnienia kontaktowego jest bardzo istotny. Im większe ciśnienie kontaktowe, tym mniejsza trwałość nawierzchni, przy takim samym obciążeniu osi.
2.11. Wpływ ciśnienia kontaktowego na wyniki obliczeń konstrukcji nawierzchni dla ruchu lekkiego KR1, średniego KR3 i bardzo ciężkiego KR6 przy nacisku osi 100 kN [20]

<table>
<thead>
<tr>
<th>Ciśnienie kontaktowe (kPa)</th>
<th>Odkształcenia w warstwach nawierzchni (mikrostrain = 10^-6)</th>
<th>Trwałość zmęczeniowa (ilość osi 100 kN, w milionach, do osiągnięcia stanu krytycznego)</th>
<th>Względne zmniejszenie trwałości zmęczeniowej przez wzrost ciśnienia powyżej 650 kPa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spód warstw asfaltowych</td>
<td>górna ulepszona podłoga gruntowego</td>
<td>spękania warstw asfaltowych (na 20% powierzchni pasa ruchu)</td>
<td>krytyczne deformacje strukturalne (12,5 mm)</td>
</tr>
<tr>
<td>KR1 (8 cm MMA + 20 cm KłSM) E₀ = 100 MPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>168,20</td>
<td>-722,50</td>
<td>0,788</td>
</tr>
<tr>
<td>850</td>
<td>191,30</td>
<td>-748,90</td>
<td>0,516</td>
</tr>
<tr>
<td>1000</td>
<td>205,90</td>
<td>-762,80</td>
<td>0,405</td>
</tr>
<tr>
<td>KR3 (18 cm MMA + 20 cm KłSM) E₀ = 120 MPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>91,28</td>
<td>-296,40</td>
<td>1,984</td>
</tr>
<tr>
<td>850</td>
<td>99,19</td>
<td>-301,70</td>
<td>1,510</td>
</tr>
<tr>
<td>1000</td>
<td>103,80</td>
<td>-304,30</td>
<td>1,300</td>
</tr>
<tr>
<td>KR6 (31 cm MMA + 20 cm KłSM) E₀ = 120 MPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>42,69</td>
<td>-130,80</td>
<td>24,206</td>
</tr>
<tr>
<td>850</td>
<td>44,45</td>
<td>-132,20</td>
<td>21,192</td>
</tr>
<tr>
<td>1000</td>
<td>45,38</td>
<td>-132,90</td>
<td>19,796</td>
</tr>
</tbody>
</table>

2.12. Podsumowanie

1. Na podstawie analizy danych z ważenia pojazdów w ruchu na polskich drogach stwierdzono, że średnie współczynniki równoważności obciążenia pojazdów obliczone według każdej z rozważonych metod są wyższe dla pojazdów ciężarowych bez przyczep i autobusów (kategorie C i A) niż obecnie przyjmowane współczynniki przeliczeniowe z katalogu typowych konstrukcji nawierzchni podatnych i półsztywnych z 1997 roku. Średnie współczynniki równoważności obciążenia pojazdów ciężarowych z przyczepami (kategoria C+P) zgodnie z obliczeniami są niższe niż współczynniki przeliczeniowe zamieszczone w Katalogu z 1997r.

2. W analizie danych określono, że udział pojazdów przeciążonych w ruchu ma bardzo duży wpływ na wielkość średniego współczynnika równoważności obciążenia pojazdów. Oddziaływanie pojazdów przeciążonych na
nawierzchnię drogową zostało uwzględnione przy określeniu nowych współczynników przeliczeniowych.

3. Po przeprowadzeniu obliczeń okazało się, że niszczące oddziaływanie ruchu ciężkiego na warstwy asfaltowe i podbudowy związane cementem jest tym większe, im mniejsza jest grubość nawierzchni.

4. Podbudowy związane cementem okazały się bardziej wrażliwe na przeciżenia wynikające z przekroczenia ciężaru osi niż podbudowy asfaltowe i z kruszyw niezwiązanych.

5. Stwierdzono, że podbudowy związane cementem wykazują dużo większą trwałość na oddziaływanie ruchu drogowego jeżeli nie są przekraczane dopuszczalne naciski osi w pojazdach.

6. Obliczenia średniego współczynnika równoważności obciążenia pojazdu przeprowadzone na podstawie danych z ważenia pojazdów w ruchu na polskich drogach dały bardzo zbliżone wyniki jak obliczenia przeprowadzone na drogach brytyjskich i niemieckich.

7. Na podstawie analizy metod obliczania ruchu projektowego stosowanych w innych krajach można stwierdzić, że polski współczynnik przeliczeniowy \(r_2 \) samochodów ciężarowych z przyczepą \((r_2=1,95)\) podany w katalogu z 1997 roku jest znacznie wyższy od współczynników przyjmowanych w większości krajów europejskich.

8. Ustalono, że zarówno struktura ruchu ciężkiego jak również obciążenia pojazdów wyrażone współczynnikiem przeliczeniowym \(r_1 \) będą inne dla autostrad i dróg ekspresowych, dróg krajowych i pozostałych dróg, dlatego zaproponowano wprowadzenie osobnych współczynników przeliczeniowych dla każdej z wymienionych kategorii dróg.

10. W niniejszym raporcie podano nowe współczynniki przeliczeniowe w oparciu dokładną analizą danych z ważenia pojazdów w ruchu na polskich drogach i wielu innych istotnych czynników.

11. Podane współczynniki przeliczeniowe mogą jeszcze ulec zwiększeniu z uwagi na możliwość uwzględnienia wzrostu ciężarów pojazdów i ich osi w całym okresie projektowym konstrukcji nawierzchni.

12. Zaproponowano wydłużenie okresu projektowego do 30 lat dla autostrad i dróg ekspresowych, i pozostawienie 20 lat dla pozostałych dróg.

2.13. Literatura

[12] Richtlinien für die Standardisierung des Oberbaues von Verkehrsflachen RSTO 01. FGSV, Kolonia, Niemcy 2001
[13] Oberbaubemessung RVS 03.08.63. FSV, Austria 2008

[22] M. De Beer i wsp.: Tyre-pavement interface contact stresses on flexible pavements. 8th Conference on asphalt pavements for Southern Africa

3. OPRACOWANIE MODELI ZMĘCZENIOWYCH DO WERYFIKACJI POLSKIEGO ,,KATALOGU TYPOWYCH KONSTRUKCJI NAWIERZCNI PODATNYCH I PÓŁSZTYWNYCH” Z 1997 ROKU.

Opracowali: Prof. dr hab. inż. Józef Judycki, mgr inż. Mariusz Jaczewski

3.1. Wstęp

Niniejszy rozdział przedstawia opracowanie kryteriów zmęczeniowych do weryfikacji polskiego ”Katalogu typowych konstrukcji nawierzchni podatnych i półsztywnych” [1] z 1997 roku, zwanego dalej w skrócie „Katalogiem (1997)”. Przedstawiono w tym rozdziale:

a) Krótki opis kryteriów zmęczeniowych użytych w Katalogu (1997),
b) Wybór nowych kryteriów do weryfikacji katalogu,
c) Opis kryteriów użytych w nowej mechanistyczno – empirycznej metodzie AASHTO 2004, według [2,3],
d) Opis kryteriów francuskich, według [4,5,17].

Do dalszego stosowania przy weryfikacji Katalogu (1997) zalecono po analizie następujące kryteria zmęczeniowe:

b) Kryteria podłoża gruntowego (deformacji strukturalnych): Instytutu Asfaltowego [10] i francuskie [4,5,17],

3.2. Kryteria użyte do opracowania Katalogu (1997)

Zespół prof. Judyckiego przeprowadził analizę wszystkich dostępnych na początku lat 1990-tych kryteriów i opracował w 1995 roku raport [6], który przedstawia analizę i wybór kryteriów oraz wymiarowanie konstrukcji do Katalogu (1997). Przeanalizowane zostały następujące kryteria zmęczeniowe:

- a) Kryteria zmęczeniowe warstw asfaltowych: belgijskie, Instytutu Asfaltowego z USA, Uniwersytetu Nottingham z Wielkiej Brytanii i Shella,
- b) Kryteria zmęczeniowe podłoża gruntowego (deformacji strukturalnych): belgijskie, Instytutu Asfaltowego, Uniwersytetu Nottingham i Shella,
- c) Kryteria spękań warstw podbudów i wzmocnionych podłoży związanych spojwami hydraulicznymi: Dempsey’a (Uniwersytet Illinois), Verstraetena (Belgia) i De Beera (RPA).

Po analizie wybrano do opracowania Katalogu (1997) następujące kryteria:

- a) Kryteria zmęczeniowe warstw asfaltowych: Instytutu Asfaltowego i Shella,
- b) Kryteria zmęczeniowe podłoża gruntowego (deformacji strukturalnych): Instytutu Asfaltowego i Shella,
- c) Kryteria spękań warstw podbudów i wzmocnionych podłoży związanych spojwami hydraulicznymi: Dempsey’a (Uniwersytet Illinois), Verstraetena (Belgia) i De Beera (RPA).

Opis analizowanych kryteriów i ich porównanie przedstawia artykuł [7].

Wybór kryteriów do opracowania Katalogu (1997) podyktowany był następującymi czynnikami:

- a) Kryteria Instytutu Asfaltowego z USA i Shella miały charakter globalny, a kryteria belgijskie i Uniwersytetu Nottingham miały charakter lokalny. Kryteria globalne przystosowane były do bardziej zróżnicowanych warunków klimatycznych i środowiskowych i lepiej nadawały się do zastosowania w polskich warunkach.
- b) Wykonane analizy pokazały, że nawierzchnie podatne przyjęte we wcześniejszym katalogu z 1977 roku, były zasadniczo zgodne z obliczonymi według kryterium Instytutu Asfaltowego, co pokazuje rys. 3.1 i 3.2. Kryteria Shella dawały cieńsze nawierzchnie.
- c) Wykonane analizy pokazały, że nawierzchnie półsztywne przyjęte we wcześniejszym katalogu z 1977 roku były dość zgodne z obliczonymi według kryteriów Dempsey’a (Uniwersytet Illinois), Verstraetena (Belgia) i De Beera (RPA). Występowały różnice, szczególnie istotne przy małym ruchu dla kryterium Dempsey’a (rys. 3.3).

Aby wybrać odpowiednie kryteria zmęczeniowe porównano wyniki obliczeń nawierzchni według wielu kryteriów zmęczeniowych z nawierzchniami z ówcześnie obowiązującego katalogu z 1977 r.. Na rys. 3.1, 3.2 i 3.3 na osi pionowej są podane grubości zastępcze H_z nawierzchni, a na osi poziomej średnioroczny ruch dobowy w osiach 100 kN/dobę. Grubości zastępcze obliczono według metody CBR. Linie ukośne pokazują wyniki obliczeń.
mechanistycznych według różnych kryteriów. Poziome, grube linie pokazują grubości zastępcze nawierzchni według starego katalogu z 1977 r. Jak widać nie ma pełnej zgodności grubości zastępczych nawierzchni ze starego katalogu z 1977 roku z wynikami obliczeń według metod mechanistycznych. Dla nawierzchni podatnych kryterium Instytutu Asfaltowego daje wyniki bezpieczniejsze od kryterium Shella i najbardziej zbliżone do konstrukcji katalogowych (rys. 3.1). Kryteria Uniwersytetu Nottingham i Belgii dają pośrednie wyniki (rys. 3.1). W nawierzchniach półsztywnych (rys. 3.3), przy cienkich nawierzchniach, występują dość duże rozbieżności pomiędzy grubościami zastępczymi nawierzchni katalogowych z 1977 r. a nawierzchniami obliczonymi. Przy grubszych nawierzchniach występuje dość dobra zgodność.

Rys. 3.1. Porównanie wyników obliczeń konstrukcji nawierzchni według różnych kryteriów z konstrukcjami Katalogu z 1977 roku, dla nawierzchni z podbudowami z kruszywa łamanego, według [6].
Rys. 3.2. Porównanie wyników obliczeń konstrukcji nawierzchni według kryteriów Instytutu Asfaltowego i Shella z konstrukcjami Katalogu z 1977 roku, dla nawierzchni z podbudowami z kruszywa łamanego (obwiednia wyników obliczeń) według [6].

Rys. 3.3. Porównanie wyników obliczeń konstrukcji nawierzchni według różnych kryteriów z konstrukcjami Katalogu z 1977 roku, dla nawierzchni półśtywnych, według [6].
3.3. Wybór nowych kryteriów do weryfikacji Katalogu (1997)

3.3.1. Przyczyny poszukiwania nowych kryteriów

Biorąc pod uwagę potencjał badawczy w Polsce i ograniczone fundusze na podstawowe badania drogowe, można stwierdzić, że nie ma szans na opracowanie w Polsce oryginalnych, własnych kryteriów zmęczeniowych. Należy próbować adaptować nowsze metody zagraniczne.

Przyczyny poszukiwania nowych kryteriów są następujące:

d) **Z analizy przeprowadzonej w niniejszej pracy wynika, że polskie nawierzchnie katalogowe są grubsze od nawierzchni katalogowych austriackich, francuskich i niemieckich oraz od obliczonych według metody brytyjskiej (patrz rozdział 4).**
3.4. Opis kryteriów użytych w nowej mechanistyczno–empirycznej metodzie AASHTO 2004

3.4.1. Wprowadzenie

3.4.1.1. Dane ogólne

Modele zmęczeniowe AASHTO 2004 były skalibrowane na podstawie wyników badań na dużej ilości odcinków doświadczalnych LTPP (Long Term Pavement Performance) położonych w różnych warunkach klimatycznych w USA i w dwóch prowincjach Kanady. Badań kalibracyjnych kryteriów zmęczeniowych w tak dużej skali nigdy przedtem w świecie nie wykonano. Podane w metodzie AASHTO 2004 modele zmęczeniowe są więc bardziej niż dotychczasowe oparte o rzeczywiste zachowanie nawierzchni. Inne kryteria, takie jak belgijskie, brytyjskie, francuskie są dostosowane do specyficznych warunków klimatycznych. Badania AASHTO 2004 przeprowadzono w bardzo różnych warunkach klimatycznych, w tym podobnych do Polski.

W oryginalnej metodzie użyto jednostek miar US, zwanych imperialnymi. Autorzy tego raportu przeliczyli współczynniki i podali wzory w jednostkach metrycznych.

Kryteria AASHTO 2004 można podzielić na następujące rodzaje:

 a) Kryteria spękań warstw asfaltowych,
 b) Kryteria deformacji trwałych,
 c) Kryteria spękań warstw związanych spoiwami hydraulicznymi.

Zostaną one dalej kolejno przedstawione.

3.4.1.2. Różnice w metodach obliczeń w AASHTO 2004 i w tradycyjnych metodach mechanistyczno - empirycznych

Metoda obliczeń w metodzie AASHTO 2004 jest inna niż dotychczas stosowana w tradycyjnych metodach mechanistyczno – empirycznych, takich jak Instytut Asfaltowego, Shella, belgijskiej czy francuskiej. W metodach tradycyjnych określano ruch obliczeniowy w okresie eksploatacji (20, 30 lub 40 lat) wyrażony w równoważnych pojedynczych osiach standardowych, które miały ciężary 80 kN,
100 kN lub 130 kN w różnych krajach. Potem sprawdzano w oparciu o kryteria zmęczeniowe, czy dana konstrukcja przeniesie bezpiecznie ruch obliczeniowy. Posłużywano się temperaturą ekwiwalentną dla danego obszaru dla całego roku, lub dla czterech kwartałów w roku.

W metodzie AASHTO 2004 analiza konstrukcji nawierzchni prowadzona jest sukcesywnie w czasie, począwszy od początku eksploatacji drogi do końca okresu analizy, przez cały okres obliczeniowy. Dla danego odcinka drogi, obliczenia wykonywane są dla każdego kolejnego miesiąca w okresie eksploatacji z uwzględnieniem temperatury ekwiwalentnej w tym miesiącu i jej wpływu na sztywność warstwy asfaltowej. Dla okresów zamarzania i rozmarzania podłoża obliczenia wykonywane mogą być co 2 tygodnie. Pozwala to lepiej uwzględniać ekstremalne warunki nośności podłoża. Dla danego odcinka drogi bierze się pod uwagę dane klimatyczne pochodzące z obserwacji meteorologicznych. Określa się temperaturę każdej warstwy (i podwarstwy)\(^1\) konstrukcji nawierzchni w każdym kolejnym miesiącu. W zależności od temperatury przyjmuje się aktualną sztywność warstw asfaltowych. Uwzględnia się zmiany wilgotności podłoża gruntowego i warstw niezwiązanych. W zależności od wilgotności określa się sztywność podłoża gruntowego i warstw niezwiązanych konstrukcji. Uwzględnia się osłabienie warstw związanych hydraulicznie wskutek postępującego procesu spękań. Dla każdego okresu określa się naprężenia i odkładania w nawierzchni i następnie szkodę zmęczeniową wywołaną przez ruch. Szkody zmęczeniowe sumuje się według reguły Minera w całym okresie projektowym nawierzchni (na przykład 40 lat).

W metodzie AASHTO 2004 uwzględnia się wpływ następujących czynników na kolejne przyrosty szkody zmęczeniowej, co wiąże się z kolejnymi obliczeniami odkładania i szkody zmęczeniowej:

- Wiek nawierzchni – zmiany co jeden rok; uwzględnia się starzenie i twardnienie warstw asfaltowych.
- Obliczeniowy okresy czasu – okres równy 1 miesiąc albo 2 tygodnie; uwzględnia się temperatury i wilgotności warstw w każdym takim okresie.
- Obciążenie – uwzględnia się ruch występujący w danym obliczeniowym okresie czasu,
- Obciążenia osi w danym okresie obliczeniowym,
- Temperaturę i wilgotność warstw w danym obliczeniowym okresie czasu – uwzględnia się wpływ temperatury na moduł sztywności warstw asfaltowych i wpływ wilgotności na moduły warstw kruszyw niezwiązanych i podłoża gruntowego.

\(^1\) Warstwy nawierzchni dzieli się w usystematyzowany sposób na podwarstwy, maksymalnie do 19 podwarstw dla całej nawierzchni i 10 podwarstw dla warstw asfaltowych.
W metodzie AASHTO 2004 zrezygnowano ze stosowania pojęcia „równoważna oś standardowa” – „equivalent standard axle load ESAL”\(^2\). Ruch jest opisywany w sposób dużo bardziej złożony i wymagający wielu danych. Lista tych danych obejmuje między innymi [9]: ilość pojazdów ciężkich w danym okresie, rozkład pojazdów w grupach (13 grup według FHWA, w tym 9 grup to pojazdy ciężkie), układ osi i kół, rozkład ciężarów osi, charakterystyka opon i ciśnień w oponach, rozkład obciążenia kołami w przekroju poprzecznym, wskaźnik wzrostu ruchu. Takich danych w Polsce brak i dlatego konieczne jest stosowanie prostszych metod analizy ruchu.

W metodzie AASHTO 2004 oblicza się szkody zmęczeniowe w każdym kolejnym obliczeniowym okresie czasu (co 1 miesiąc lub co 2 tygodnie) i potem sumuje te szkody według prawa Minera w całym okresie projektowym nawierzchni, na przykład w okresie w USA może to być 40 lat. Od obliczonej szkody zmęczeniowej zależy ilość spękań zmęczeniowych nawierzchni.

Znając ilość uszkodzeń (spękań, deformacji) można określić stan nierówności nawierzchni, w postaci IRI, który jest podstawową miarą funkcjonalnej przydatności nawierzchni (pavement serviceability).

Jak widać z powyższego opisu zastosowanie kryteriów AASHTO do tradycyjnej analizy w Polsce nie jest proste i wymaga dostosowania kryteriów i metodologii obliczeń.

3.4.2. Kryterium AASHTO 2004 spękań zmęczeniowych warstw asfaltowych

3.4.2.1. Spękania typu „z dołu do góry” i „z góry na dół”

Kryteria zmęczeniowe warstw asfaltowych opisuje raport [2] str. 3.3.65 – 3.3.80 oraz raport [3]. Spękania zmęczeniowe warstw asfaltowych nawierzchni drogowych wywołane przez obciążenie ruchem są uważane za jedną z najistotniejszych form uszkodzeń. W metodzie AASHTO 2004 opracowano modele matematyczne dla dwóch typów spękań zmęczeniowych warstw asfaltowych, to znaczy „spękania z dołu do góry” i „spękania z góry na dół”, odpowiednio w języku angielskim zwanych spękaniami „bottom-up” i „top-down” (rys. 3.4 i 3. 5). Powszechnie znane są spękania typu „z dołu do góry” i tylko one były dotychczas uwzględniane w projektowaniu nawierzchni. Spękania „z dołu do góry” inicjowane są na spodzie warstw asfaltowych zginanych przez koła pojazdów i penetrują w górę. Gdy pokazują się na powierzchni jezdni mają charakter spękań zwanych siatkowymi, albo aligatorowymi. Mechanizm spękań

\(^2\) Jest to pewien paradoks. Pojęcie równoważnej osi standardowej wprowadzono po raz pierwszy w USA, po Teście AASHO, w 1961, w pierwszej wstępnej wersji metody AASHO z 1961 r. Inne kraje świata wtedy tego pojęcia nie stosowały, ale po pewnym czasie zaczęły je wprowadzać. Po 43 latach w USA, w metodzie AASHTO 2004 zrezygnowano ze stosowania tego pojęcia, a inne kraje to pojęcie wciąż u siebie stosują.
„z góry na dół” jest bardziej złożony i nie do końca wyjaśniony. Są to spękania liniowe, występują w śladowych kół pojazdów i sięgają najczęściej na ograniczoną głębokość rzędu 50 – 75 mm. Są raczej charakterystyczne dla grubych warstw asfaltowych. Przyjmuje się, że za spękania „z góry na dół” odpowiadają naprężenia rozciągające i ścinające powstające na powierzchni jezdni przy ruchu koła, a także nierównomiernie rozłożone kontaktowe naprężenia pionowe skoncentrowane na styku krawędzi śladu koła i nawierzchni. Wśród przyczyn występowania spękań „z góry na dół” oprócz ruchu wymienia się także naprężenia termiczne oraz efekt usztywnienia górnej warstewki asfaltowej wskutek jej starzenia. W dotychczasowych kryteriach zmęczeniowych spękań warstw asfaltowych, omówionych szczegółowo w [7], ujmowane były tylko „spękania z dołu do góry”. Metoda AASHTO 2004 jest pierwszą metodą przedstawiającą praktyczny model matematyczny „spękań z góry na dół”.

Rys. 3.4. Spękania typu „z dołu do góry” („bottom – up”) o charakterze siatkowym na DW Nr 222 (fot. Katedra Inżynierii Drogowej Politechniki Gdańskiej, według [13])
Rys. 3.5. Spękania typu „z góry na dół” o charakterze liniowym na DK Nr 1 (fot. Katedra Inżynierii Drogowej Politechniki Gdańskiej, według [13]) – na odwiercie widać penetrację spękania w dół na kilka centymetrów.

3.4.2.2. Kalibracja terenowa modeli zmęczeniowych AASHTO 2004

Modele opublikowane w AASHTO 2004 zostały zweryfikowane na 136 odcinkach LTPP (Long Term Pavement Performance), 94 nowych i 42 po rehabilitacji. Wszystkie odcinki LTPP były zlokalizowane na normalnie eksploatowanych drogach w znacznej części wyposażonych w urządzenia do ważenia pojazdów w ruchu (WIM). Odcinki doświadczalne były zlokalizowane w wielu stanach USA i 2 prowincjach Kanady, w różnych warunkach klimatycznych, od Alaski do Florydy. Opis budowy i kalibracji modeli zmęczeniowych w metodzie AASHTO 2004 przedstawia raport opracowany przez M.M. Witczaka i M.M. El-Basyouny [3], a w języku polskim praca [8]. Ze względu na wnikliwą weryfikację terenową modele zmęczeniowe podane w metodzie AASHTO 2004 są bardziej wiarygodne niż dotychczasowe. Kalibracja terenowa modeli AASHTO 2004 obejmowała: zebranie danych do kalibracji z odcinków doświadczalnych LTPP, obliczenia symulacyjne przy użyciu różnych wartości współczynników kalibracji w modelach zmęczeniowych, weryfikację wyników obliczeń przez porównanie obliczonej szkody zmęczeniowej z ilością spękań zmęczeniowych na każdym odcinku doświadczalnym LTPP i selekcję kombinacji współczynników kalibracji o najmniejszym rozrzucie i o prawidłowym trendzie.

87
3.4.2.3. Model spękań zmęczeniowych warstw asfaltowych przyjęty w metodzie AASHTO 2004

Autorzy metody AASHTO 2004 w analizie użyli dwóch modeli: Instytutu Asfaltowego [7,10] i Shell'a w wersji podanej przez Bonnuare i wsp. [11], która jest inna od wersji podanej w metodzie Shell (Claessen i wsp. [7, 12]). Po badaniach terenowych model Bonnuare i wsp. [11] odrzucono jako bardziej odbiegający od wyników terenowych i do dalszej analizy przyjęto tylko model Instytutu Asfaltowego, który uściślono i rozbudowano o współczynniki kalibracyjne pochodzące z danych terenowych. Po uwzględnieniu współczynników kalibracyjnych otrzymano ostatecznie model, podany poniżej w jednostkach metrycznych:

\[N_f = 7.3557 \times (10^{-6}) \cdot C \cdot k'_1 \left(\frac{1}{\varepsilon_t} \right)^{3.9492} \left(\frac{1}{E} \right)^{1.281} \]

(3.1)

gdzie:

- \(N_f \) – liczba powtarzalnych obciążeń do wystąpienia spękań zmęczeniowych, na 50% całkowitej powierzchni pasa ruchu,
- \(k'_1 \) – parametr określony w procesie kalibracji, zależny od grubości warstwy asfaltowej, podany poniżej w pkt. 3.4.2.4,
- \(\varepsilon_t \) – odkształcenie rozciągające w krytycznym punkcie, liczba bezwymiarowa,
- \(E \) – moduł sztywności warstwy asfaltowej, w MPa,
- \(C \) – współczynnik zależny od właściwości objętościowych mieszanki mineralno-asfaltowej, określony wzorami:

\[C = 10^M \]

\[M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right) \]

(3.2)

gdzie:

- \(V_b \) – efektywna zawartość asfaltu, % objętościowo,
- \(V_a \) – zawartość wolnych przestrzeni, % objętościowo.

Przez efektywną zawartość asfaltu rozumie się zawartość całkowitą pomniejszoną o asfalt zabsorbowany w porach kruszywa. Absorbcja jest istotna w przypadku kruszyw o większej porowatości.

Krytycznym punktem w konstrukcji nawierzchni jest taki punkt, w którym powstają największe odkształcenia rozciągające. Jest to punkt położony albo na spodzie warstw asfaltowych pod kołem pojazdu dla spękań typu „z dołu do góry”, albo na powierzchni górnej warstw asfaltowych w pobliżu krawędzi śladu koła pojazdu dla spękań typu „z góry na dół”.

\[^3 \text{Są dwie wersje kryteriów zmęczeniowych opracowanych przez badaczy firmy Shell (Bonnuaire i wsp. [11] i Claessen i wsp. [7, 12]). Różnią się między sobą dość istotnie.} \]
3.4.2.4. Parametr k_1', zależny od grubości warstw asfaltowych i charakteru ich pracy

Nową jakością modeli AASHTO 2004 jest uwzględnienie po raz pierwszy w praktycznych wzorach charakteru pracy warstw asfaltowych, w zależności od ich grubości (kontrolowane odkształcenie przy cienkich warstwach poniżej 50 mm, stan pośredni dla grubości od 50 do 200 mm i kontrolowane naprężenie przy grubych warstwach powyżej 200 mm). Zmienny typ pracy warstwy w zależności od jej grubości uwzględniono przez wprowadzenie parametru k_1'. Parametr k_1' określony jest następującymi wzorami, podanymi w jednostkach metrycznych:

a) Dla spękań typu „z dołu do góry”:

$$k_1' = \frac{1}{0,000398 + \frac{0,003602}{1 + e^{(11,02-1,374\cdot h_{ac})}}}$$ \hspace{1cm} (3.3)

b) Dla spękań typu „z góry na dół”:

$$k_1' = \frac{1}{0,01 + \frac{12,00}{1 + e^{(15,676-1,1097\cdot h_{ac})}}}$$ \hspace{1cm} (3.4)

gdzie: h_{ac} – całkowita grubość wszystkich warstw asfaltowych w konstrukcji nawierzchni, w cm.

Na rys. 3.6 pokazano przebieg współczynnika k_1' dla spękań „z dołu do góry” w zależności od grubości warstw asfaltowych\(^4\). Współczynnik k_1' przyjmuje duże wartości dla cienkich warstw asfaltowych i zmierza ku stałej wartości przy warstwach o grubości łącznej powyżej 100 mm. Wpływ całkowitej grubości warstw asfaltowych, wtedy gdy są one cieńsze od 100 mm, jest bardzo duży. Cienkie nawierzchnie asfaltowe, ze względu na obciążenia typu kontrolowanego odkształcenia, mają przy takich samych odkształceniach rozciągających znacznie większą trwałość niż grube warstwy asfaltowe. Współczynnik k_1' jest rzędu $k_1' = 2500$ dla $h_{ac} = 40$ mm i $k_1' = 250$ dla $h_{ac} \geq 100$ mm. Trwałość zmęczeniowa przy takim samym odkształceniu rozciągającym εt jest więc przy warstwie cienkiej 40 mm 10 razy większa niż przy warstwach grubszych od 100 mm.

\(^4\) Zwraca się uwagę, że w raporcie z badań AASHTO 2004 [3] jest błąd i na rys. 19, str. 49 podano w tej pracy odwrotność współczynnika $1/k_1'$, a nie sam współczynnik k_1'.

89
Ten wynik amerykańskich badań może budzić wątpliwości wśród osób mniej zapoznanych z trwałością zmęczeniową mieszanek mineralno-asfaltowych. Wyjaśnić można, że warunki kontrolowanego naprężenia i kontrolowanego odkształcenia można łatwo regulować w testach laboratoryjnych. Test kontrolowanego naprężenia polega na przykładaniu do próbki mieszanek mineralno-asfaltowej naprężeń o kontrolowanym przebiegu (na przykład o stałej amplitudzie naprężeń) i pomiarze zmieniających się odkształceń. Test kontrolowanego odkształcenia polega na przykładaniu do próbki odkształceń o kontrolowanym przebiegu (na przykład o stałej amplitudzie odkształceń) i pomiarze zmieniających się naprężeń. Dwa typy testów dają diametralnie różne wyniki. Różnice uzyskane w laboratorium w tych dwóch testach, przy takim samym odkształceniu początkowym, dla takiej samej mieszanek, mogą być różne ponad 50 razy [3,8]. Mieszanki mineralno-asfaltowe zachowują się w czasie tych dwóch testów zupełnie inaczej; mieszanki sztywne są bardziej trwałe w warunkach kontrolowanego naprężenia, a mieszanki podatne odwrotnie są bardziej trwałe w warunkach kontrolowanego odkształcenia i odwrotnie.

3.4.2.5. Ilość spękań zmęczeniowych w zależności od szkody zmęczeniowej

Ilość spękań siatkowych (aligatorowych) typu „z dołu do góry” oblicza się ze szkody zmęczeniowej według wzoru:

$$FC_{bottom} = \frac{100}{1 + e^{(C_1\cdot C_{11} + C_2\cdot C_{12}\cdot \log_{10}(D\cdot 100))}}$$ \hspace{1cm} (3.5)$$

gdzie:

- FC_{bottom} – ilość spękań siatkowych (aligatorowych) typu „z dołu do góry”, wyrażona w procentach w stosunku do całej powierzchni pasa ruchu,
D – szkoda zmęczeniowa wywołana na spodzie warstw asfaltowych (powinna być wstawiana do tego wzoru jako ułamek dziesiętny, a nie jako procent).

Współczynniki kalibracyjne są następujące:

\[
\begin{align*}
C_1 &= 1,0 \\
C'_1 &= -2 \cdot C_2 \\
C_2 &= 1,0 \\
C'_2 &= -2,40874 - 39,748 \cdot (1 + h_{ac}/2,54)^{-2,856}
\end{align*}
\]

h_{ac} – grubość warstw asfaltowych, w cm.

Po wstawieniu podanych wyżej współczynników kalibracyjnych do wzoru (5) otrzymano:

\[
FC_{bottom} = \frac{100}{1 + e^{(C_2 \log_{10}(D/100))}}
\]

gdzie: oznaczenia jak poprzednio.

Ilość spękań typu „z góry na dół” oblicza się ze szkody zmęczeniowej ze wzoru podanego poniżej w jednostkach metrycznych:

\[
FC_{top} = \frac{17,936}{1 + e^{(7,0 - 3,5 \log_{10}(D/100))}}
\]

gdzie:

FC_{top} – ilość spękań podłużnych, liniowych „z góry na dół”, w metrach na 1 kilometr pasa ruchu,

D – szkoda zmęczeniowa na górze warstw asfaltowych, dla spękań typu „z góry na dół” (powinien być wstawiany do wzoru ułamek dziesiętny, a nie procent).

3.4.2.6. Porównanie w wynikami terenowymi

Związek ilości spękań FC ze szkodą zmęczeniową D przedstawia rys. 3.7. Na osi poziomej podany jest logarytm dziesiętny ze szkody zmęczeniowej D wyrażonej w procentach. Na osi pionowej podano ilość spękań. Linie ciągłe są graficzną interpretacją modelu obliczeniowego. Na osi pionowej (FC) są wyniki pomiarów ilości spękań siatkowych (aligatorowych) na odcinkach doświadczalnych LTPP, a na osi poziomej (D) jest obliczona w procesie symulacji komputerowej szkoda zmęczeniowa. W procesie symulacji obliczano szkodę zmęczeniową D i porównywaną ją z obserwowaną ilością spękań FC. Proces obliczeń był bardzo złożony, i jest opisany w [3] i [8].
W przypadku spękań „z dołu do góry” szkodzie zmęczeniowej \(D = 100\% \), czyli \(\log_{10} D =2 \), odpowiada 50% spękanej powierzchni pasa ruchu w postaci spękań siatkowych (aligatorowych). Obliczone ze wzorów wartości są ilością wszystkich spękań o różnej intensywności (dużej, średniej i malej). Zwraca uwagę duży rozrzut wyników badań terenowych, (rys. 7) co jest normalne w przypadku badań spękań zmęczeniowych i wynika z wpływu wielu bardzo zróżnicowanych czynników na spękania. Widać z położenia punktów z badań na rys. 3.7, że na przykład, przy \(\log D =1 \), czyli przy szkodzie zmęczeniowej \(D=10\% \), ilość spękań aligatorowych wynosiła od około zera do 30% a nawet do 50% w stosunku do całej powierzchni pasa ruchu.

Podobnie wygląda zależność dla spękań „z góry na dół”. W przypadku spękań podłużnych w śladzie kół, typu „z góry na dół”, szkodzie zmęczeniowej \(D =100\% \), odpowiada około 6000 stóp spękań podłużnych w śladach kół na 1 milę. W przeliczeniu na jednostki metryczne oznacza to 1137 metrów bieżących spękań podłużnych w śladach kół na 1 km, lub po 569 m spękań podłużnych na 1 km, w każdym śladzie kół.

3.4.2.7. Wstępne obliczenia i analizy w ramach niniejszej pracy

W ramach niniejszej pracy autorzy tego rozdziału wykonali obliczenia dla warstwy podbudowy asfaltowej, typowej w polskich warunkach, przy następujących danych o warstwie asfaltowej: efektywna zawartość objętościowa asfaltu 10%,

Rys. 3.7. Ilość spękań aligatorowych typu „z dołu do góry” w zależności od szkody zmęczeniowej \(D \) (wyrażonej w %) powstałej na spodzie warstw asfaltowych, według [2]
zawartość wolnych przestrzeni 8%. Przyjęto moduł sztyności 9600 MPa w temperaturze 10°C.

W dotychczasowych metodach (Instytutu Asfaltowego, Shella i innych opisanych w artykule [7]) trwałość zmęczeniowa zależała od odkształceń ε, ale nie zależała od grubości warstwy. Przy takim samym odkształceniu rozciągającym dla konkretnego materiału definiowano jedną wartość liczbową trwałości zmęczeniowej. W metodzie AASHTO 2004 trwałość zależy nie tylko od odkształceń rozciągających ε, ale także od grubości warstwy. Dlatego na rys. 3.8 pojedyncze linie reprezentują wartości dla metod Instytutu Asfaltowego i Shella, a wiele linii reprezentuje wartości dla metody AASHTO 2004, każda linia dla innej grubości warstwy. Jak widać z rys. 3.8, przy grubości 5 cm trwałość z metody AASHTO 2004 jest największa (przy takich samych odkształcenach ε). Przy grubościach warstwy asfaltowej powyżej 10 cm trwałość jest praktycznie niezależna od grubości warstwy i linie na rys. 3.8. pokrywają się.
Rys. 3.8. Porównanie obliczonej trwałości zmęczeniowej z metod Instytutu Asfaltowego (IA), Shella i AASHTO 2004, według [13]. (Przy grubościach warstw asfaltowych 10, 20 i 30 cm linie dla metody AASHTO 2004 pokrywają się.)

Rys. 3.9. Trwałość zmęczeniowa obliczona z metody AASHTO 2004 dla odkształćenie rozciągających na spodzie warstw asfaltowych ε równych 100 microstrainów (10^{-6}), według [13].

Rys. 3.10 przedstawia, zależność pomiędzy szkodą zmęczeniową D i ilością spękań siatkowych FC z metody AASHTO 2004.
Wyjaśnienia dodatkowe:

- W metodzie AASHTO 2004 ilość spękań FC wyrażona jest stosunkiem powierzchni spękanej na danym pasie ruchu do całej powierzchni tego pasa ruchu. Stosunek ten wyraża się w procentach. Jeżeli:
 - FC = 0% to brak spękań,
 - FC = 50% to 50% powierzchni pasa ruchu jest spękana,
 - FC = 100% to cała powierzchnia pasa ruchu jest spękana.
- Według AASHTO 2004 przy szkodzie zmęczeniowej równej D=1, czyli D=100%, FC=50%, co oznacza, że 50% powierzchni pasa ruchu jest spękana (patrz rys. 3.10).
- Jeżeli do obliczeń zastosujemy wzór (1) z metody AASHTO 2004 to otrzymamy wartość ${N_f}$, która jest liczbą powtarzalnych obciążeń do wystąpienia spękań zmęczeniowych na 50% całkowitej powierzchni pasa ruchu FC = 50%. Przy wartości ${N_f}$ szkoda zmęczeniowa wynosi D = 1.
- Jeżeli szkoda zmęczeniowa D maleje, to maleje ilość spękań.
- Związek D=f(FC) zależy od grubości warstwy. Przy tej samej szkodzie zmęczeniowej D, mniejszej od D=1, większa powierzchnia spękana występuje przy grubszych warstwach. Przy grubości warstw asfaltowych powyżej 10 cm wpływ grubości praktycznie zanika (patrz rys. 3.9 i 3.10).

![D(FC) diagram](image)

Rys. 3.10. Zależność pomiędzy D szkodą zmęczeniową i FC procentową ilością spękań siatkowych w stosunku do całej powierzchni pasa ruchu z metody AASHTO 2004, według [13]
3.4.2.8. Ilość spękań zmęczeniowych typu „z dołu do góry” odpowiadająca trwałości zmęczeniowej \(N_f\) obliczonej ze wzorów Instytutu Asfaltowego i AASHTO 2004

Ogólna definicja trwałości zmęczeniowej warstw asfaltowych nawierzchni drogowych jest następująca:

Trwałość zmęczeniowa \(N_f\) jest to ilość powtarzalnych obciążeń od kół pojazdów, jaką może przenieść warstwa asfaltowa nawierzchni do wystąpienia spękań zmęczeniowych.

Definicja ta nie precyzuje jaką ilość spękań zmęczeniową warstw asfaltowych uznaje się za dopuszczalną. Ma to wielkie znaczenie praktyczne. Jeżeli dopuścimy większą ilość spękań zmęczeniowych w okresie projektowym to zaprojektowane nawierzchnie będą cienkie, tańsze, ale szybciej będą ulegały uszkodzeniom i traciły właściwości funkcjonalne. Jeżeli dopuścimy małą ilość spękań zmęczeniowych będzie odwrotnie, zaprojektowane nawierzchnie będą grubsze, droższe, ale wolniej będą ulegały uszkodzeniom i traciły właściwości funkcjonalne.

Drugi ważny praktyczny problem to sposób mierzenia ilości spękań zmęczeniowych. Ilość spękań zmęczeniowych można mierzyć w różne sposoby:

- W poprzednich kilku wersjach metody AASHTO (powstałych od 1961 r. do 1993 r.), przy definiowaniu PSI („Present Serviceability Index”) przyjęto miarę ilości spękań jako długość spękań w stopach biejących (ft.) występujących na powierzchni 1000 stóp kwadratowych (1000 ft.²).
- W opisywanej w tym rozdziale metodzie AASHTO 2004 przyjęto miarę ilości spękań zmęczeniowych „z dołu do góry” jako powierzchnię spękań w stopach kwadratowych, wyrażoną w %.
- W tej samej metodzie AASHTO 2004 przyjęto miarę ilości liniowych spękań zmęczeniowych „z góry do dołu” jako stosunek długości spękań liniowych w stopach na długości 1 mili jednego pasa ruchu, wyrażony w stopach na milę.
- Inne kryteria zmęczeniowe: belgijskie, francuskie, Shella i Uniwersytetu Nottingham wcale nie definiują miary ilości spękań zmęczeniowych. Jest to istotna wada tych metod.

Kryterium Instytutu Asfaltowego [10] z 1982, używane często w Polsce, podaje następujący opis dotyczący tego zagadnienia. Opis ten podano poniżej w oryginale w języku angielskim, za raportem [3], ze str. 10 tego raportu, aby uniknąć jakichkolwiek dyskusji:

„The Asphalt Institute Ninth Edition of the MS-1 design manual used a field calibration factor of 18.4 to adjust for the effect of the laboratory to field differences. **This correction factor was developed for a 20% level cracking in**
the wheel path and was recommended by Finn in his classic NCHRP 1-10 study.”

Tłumaczenie tego tekstu jest następujące:

„Dziewiąta edycja podręcznika projektowania Instytutu Asfaltowego MS-1 wprowadza współczynnik kalibracji równy 18,4, aby uwzględnić różnice pomiędzy testami laboratoryjnymi i terenowymi. Ten współczynnik korekcyjny został określony dla 20%-owego poziomu spękań w śladach kół i został zalecony przez Finna w jego klasycznych studiach NCHRP 1-10.”

Z tego opisu wynika, że ze wzoru kryterium Instytutu Asfaltowego otrzymamy dla konkretnej nawierzchni taką liczbę obciążeń osi standardowych Nf, po której wystąpieniu 20% powierzchni w śladach kół będzie spękana.

Kryterium AASHTO 2004, opisane wyżej i podane wzorami (1),(2),(3) podaje następującą definicję. Podano ją także w oryginale w języku angielskim, za raportem [2] str. 3.3.16:

„The performance criterion for bottom-up fatigue cracking is defined as the maximum area of alligator cracking expressed as a percentage of the total lane area that is permitted to occur over the design period. Typical values of allowable bottom-up fatigue cracking are in the order of 25 to 50 percent of the total lane area”

Tłumaczenie tego tekstu jest następujące;

„Kryterium funkcjonalne dla spękań „z dołu do góry” jest zdefiniowane jako maksymalna powierzchnia spękań aligatorowych, wyrażona jako procent całkowitej powierzchni pasa ruchu, jaka jest dopuszczalna do wystąpienia w czasie całego okresu projektowego. Typowe wartości dopuszczalnych spękań „z dołu do góry” mieszczą się w zakresie od 25 do 50% całkowitej powierzchni pasa ruchu”.

Z tekstu tego wynika, że kryterium AASHTO 2004 dla spękań zmęczeniowych typu "z dołu do góry” jest zdefiniowane jako powierzchnia spękań aligatorowych wyrażona w procentach do całkowitej powierzchni pasa ruchu. W tym samym raporcie [2], str. 3.3.69 oraz w raporcie [3] str. 74 stwierdza się, że „spękania od dołu do góry są obliczane jako procent całkowitej powierzchni pasa ruchu”, w oryginale: „The bottom-up cracking is calculated as a percentage of the total lane area”. Przy szkodzie zmęczeniowej równej D =1, ilość spękań w stosunku do całkowitej powierzchni pasa ruchu FC wynosi 50% (patrz rys. 3.10 i 3.11 oraz wzór (5)).

W podsumowaniu powyższych rozważań można stwierdzić, że:

- Ze wzoru AASHTO 2004 (1), podanego powyżej oblicza się:
 - \(N_{\text{AASHTO}} \) – liczbę powtarzalnych obciążeń do wystąpienia spękań zmęczeniowych na 50% całkowitej powierzchni pasa ruchu.
Ze wzoru Instytutu Asfaltowego, jaki podany jest w publikacjach [7,8,10] oblicza się:
- \(N^{IA} \) – liczbę powtarzalnych obciążeń do wystąpienia spękań zmęczeniowych na 20% powierzchni pasa śladów kół.

20% powierzchni śladów kół jest znacznie mniejsze od 50% całkowitej powierzchni pasa ruchu. Przedstawia to rys. 3.11. Przyjmując, że:
- szerokość pasa ruchu = 3,5 m,
- szerokość śladów każdego z kół = 0,7 m,
otrzymamy, że 20% powierzchni śladów kół odpowiada:

\[
0,2 \times (0,7 + 0,7)/3,5 = 0,08 = 8%;
\]

FC = 8% powierzchni całkowitej pasa ruchu.

Rys. 3.11. Powierzchnia spękana według definicji (a) Instytutu Asfaltowego i (b) AASHTO 2004.

Na zakończenie omawiania tego zagadnienia zauważyć należy, że inne kryteria zmęczeniowe: belgijskie, francuskie, Shell’a i Uniwersytetu Nottingham wcale nie definiują ilości spękań zmęczeniowych jakie odpowiadają obliczonym z tych kryteriów trwałościom zmęczeniowym. Jest to bez wątpienia duży mankament tych kryteriów.
3.4.2.9. Wzory kryterium AASHTO 2004 dla założonej ilości spękań w stosunku do całkowitej powierzchni pasa ruchu FC

Z powyższej analizy wynika wniosek, że aby otrzymać z kryterium AASHTO 2004 wartości porównywalne z obliczonymi z kryterium Instytutu Asfaltowego należy założyć ilość spękań FC = 8%, przy szerokości pasa ruchu 3,5 m i pasa śladów kół 0,7 m. Przy nieco zmienionych szerokościach będzie to wartość rzędu FC ≈ 10%.

Związek pomiędzy ilością spękań z dołu do góry FC\(_{bottom}\) a szkodą zmęczeniową \(D\) w metodzie AASHTO 2004 podaje wzór:

\[
FC_{bottom} = \frac{100}{1 + e^{-2 \cdot C_2 + 0.1 \cdot D}}
\]

(3.9)

gdzie:
- \(FC_{bottom}\) – ilość spękań siatkowych (aligatorowych) typu „z dołu do góry”, wyrażona w procentach w stosunku do całej powierzchni pasa ruchu,
- \(D\) – szkoda zmęczeniowa wywołana na spodzie warstw asfaltowych (powinna być wstawiana do tego wzoru jako ułamek dziesiętny, a nie jako procent),

Po przekształceniu otrzymamy wzór na szkodę zmęczeniową \(D_{FC}\) jako funkcję ilości spękań \(FC_{bottom}\):

\[
D = \frac{1}{100} \cdot 10^{\ln(\frac{100}{FC_{bottom}}) \cdot \frac{1}{C_2}} + 2
\]

(10)

gdzie:
- \(D_{FC}\) – szkoda zmęczeniowa wyrażona jako ułamek dziesiętny, odpowiadająca założonej ilości spękań zmęczeniowych \(FC\),
- \(C_2\) – współczynnik zależny od grubości warstw asfaltowych:

\[
C_2' = -2,40874 - 39,748 \cdot (1 + h_{ac}/2,54)^{-2,856}
\]

(11)

\(h_{ac}\) – grubość warstw asfaltowych [cm].

Ilość powtarzalnych obciążeń do wystąpienia spękań na powierzchni \(FC(\%\) można obliczyć ze wzorów:

\[
N_{FC} = D_{FC} \cdot N_f
\]
Stąd po uwzględnieniu wzoru (1) otrzymamy:

\[
N_{FC} = D_{FC} \times 7,3557 \times (10^{-6}) \cdot C \cdot k'_1 \left(\frac{1}{\varepsilon_t} \right)^{3.9492} \left(\frac{1}{E} \right)^{1.281}
\]

(12)

\(N_{FC}\) – liczba powtarzalnych obciążeń do wystąpienia spękań zmęczeniowych, na \(FC\) procentach całkowitej powierzchni pasa ruchu,

\(D_{FC}\) – szkoda zmęczeniowa wyrażona jako ułamek dziesiętny, odpowiadająca założonej ilości spękań zmęczeniowych \(FC\) oraz grubości warstw asfaltowych \(h_{ac}\) obliczona ze wzoru (10),

\(k'_1\) – parametr określony w procesie kalibracji, zależny od grubości warstw asfaltowych, określony wzorem (3) i podany na rys. 3.6,

\(\varepsilon_t\) – odkształcenie rozciągające w krytycznym punkcie, liczba bezwymiarowa,

\(E\) – moduł sztywności warstwy asfaltowej, w MPa,

\(C\) – współczynnik zależny od właściwości objętościowych mieszanki mineralno-asfaltowej, określony poniższymi wzorami:

\[
C = 10^M
\]

(13)

\[
M = 4,84 \left(\frac{V_b}{V_a + V_b} - 0,69 \right)
\]

gddie:

\(V_b\) – efektywna zawartość asfaltu, % objętościowo,

\(V_a\) – zawartość wolnych przestrzeni, % objętościowo.

Szkodę zmęczeniową \(D_{FC}\) można odczytać z wykresów podanych na rys. 3.12 dla ilości spękań FC = 5%, 10%, 15% i 20%.

Rys. 3.12. Szkoda zmęczeniowa \(D_{FC}\) przy ilości spękań zmęczeniowych \(FC = 5\%; 10\%; 15\% i 20\%\) w stosunku do całkowitej powierzchni pasa ruchu
3.4.2.10. Porównanie kryteriów AASHTO 2004 dla warstw asfaltowych konstrukcji nawierzchni na podbudowie z kruszywa łamanego stabilizowanego mechanicznie z kryteriami Instytutu Asfaltowego i Shella

Wykonano obliczenia trwałości zmęczeniowej dla następującej konstrukcji nawierzchni, materiałów warstw i obciążenia:

Konstrukcja nawierzchni:
- warstwy asfaltowe $E = 10\,000\,\text{MPa}$, $v=0,3$; grubości zmienne od 5 do 35 cm,
- podbudowa z kruszywa łamanego stabilizowanego mechanicznie $E=400\,\text{MPa}$, $v=0,3$; $h_{KLSM} = 20\,\text{cm}$
- wzmocnione podłoże $E = 100\,\text{MPa}$, $v=0,35$.

Warstwy asfaltowe:
- zawartość objętościowa asfaltu $V_a = 10\%$,
- zawartość wolnych przestrzeni $V_v = 8\%$.

Obciążenie:
- obciążenie pojedynczym kolesem: $50\,\text{kN}$,
- ciśnienie kontaktowe $q = 650\,\text{kPa}$.

Obliczenia:
Wykonano obliczenia odkształceń na spodzie warstw asfaltowych i na górze podłoża gruntowego oraz trwałości zmęczeniowej

Wyniki obliczeń pokazują rysunki od 3.13 do 3. do 3.17:
- Rys. 13 – porównanie kryteriów AASHTO 2004 z kryteriami Instytutu Asfaltowego dla warstw asfaltowych,
- Rys. 14 – porównanie kryteriów AASHTO 2004 z kryteriami Shella dla warstw asfaltowych
- Rys 15 – porównanie kryteriów AASHTO 2004 z kryteriami Instytutu Asfaltowego i Shella dla warstw asfaltowych
- Rys. 16 – porównanie kryteriów AASHTO 2004 z kryteriami Instytutu Asfaltowego dla warstw asfaltowych i podłoża gruntowego,
- Rys. 17 – porównanie kryteriów AASHTO 2004 z kryteriami Shella dla warstw asfaltowych i podłoża gruntowego
Rys. 3.13. Porównanie kryterium AASHTO 2004 z kryterium Instytutu Asfaltowego dla warstw asfaltowych

Rys. 3.14. Porównanie kryterium AASHTO 2004 z kryterium Shella dla warstw asfaltowych
Rys. 3.15. Porównanie kryterium AASHTO 2004 z kryteriami Instytutu Asfaltowego i Shell dla warstw asfaltowych

Rys. 3.16. Porównanie kryterium AASHTO 2004 z kryteriami Instytutu Asfaltowego dla warstw asfaltowych i podłoża gruntowego,
Wnioski z obliczeń i porównania:

1. Rys. 3.13 - Kryterium asfaltowe Instytutu Asfaltowego daje największe grubości warstw asfaltowych zbliżone do AASHTO przy FC=5%.
2. Rys. 3.14 - Kryterium asfaltowe Shella daje grubości pomiędzy FC=20% i FC=50% AASHTO.
3. Rys. 3.15 - Wykresy AASHTO przy FC=5, FC = 10% i FC=20% leżą pomiędzy wykresami Instytutu Asfaltowego i Shella dla warstw asfaltowych. Wykres dla FC=50% leży zdecydowanie poniżej pozostałych krzywych.
4. Rys. 3.16 - Kryterium gruntowe Instytutu Asfaltowego zaczyna dominować poniżej N_{100} = 0,2 mln.
5. Rys. 3.17 - Kryteria gruntowe Shella zaczynają dominować przy różnym ruchu, zależnie od przyjętego prawdopodobieństwa uszkodzeń. Leżą poniżej krzywych AASHTO przy FC= 5 do 20% i powyżej FC=50%.

Wniosek ogólny:
Do dalszej analizy warto przyjąć kryterium AASHTO 2004 dla spękań zmęczeniowych warstw asfaltowych przy ilości spękań FC około 10%.
3.4.2.11. Porównanie grubości warstw asfaltowych obliczonych z kryteriów AASHTO 2004 z nawierzchniami katalogowymi na podbudowach z kruszywa łamanego niezwiązewanego

Porównano nawierzchnie katalogowe Polski, Niemiec i Austrii na podbudowie z kruszywa łamanego niezwiązanego (w Polsce nazywanego kruszywem łamanym stabilizowanym mechanicznie).

Grubości warstw asfaltowych według Instytutu Asfaltowego i Shella dla dwóch kryteriów: asfaltowego i podłoża gruntowego, wzięto z opracowania [6]. Trwałości zmęczeniowe według wzorów AASHTO 2004 obliczono tylko dla jednego kryterium – asfaltowego, przy ilości spękań FC= 10% i FC=20%.

Założenia obliczeniowe:
Konstrukcja nawierzchni:

- warstwy asfaltowe E = 10 000 MPa, ν=0,3; grubości zmienne od 5 do 35 cm,
- podbudowa z kruszywa łamanego stabilizowanego mechanicznie E=400MPa, v=0,3; h_{KLSM} = 20 cm
- wzmocnione podłoże E = 100 MPa ν=0,35.

Warstwy asfaltowe:
- zawartość objętościowa asfaltu V_a = 10%,
- zawartość wolnych przestrzeni V_v = 8%.

Obciążenie:
- obciążenie pojedynczym kołem: 50 kN,
- ciśnienie kontaktowe q = 650 kPa.

Obliczenia:
Wykonano obliczenia odkształceń na spodzie warstw i trwałości zmęczeniowej według wzorów AASHTO 2004. Moduł podłoża przyjęto w obliczeniach jako E = 100 MPa, aby wyniki można było porównywać z polskim Katalogiem 1997, do opracowania którego przyjęto także moduł 100 MPa.

 Wyniki:
Na rys. 3.18 pokazano:
- grubości warstw asfaltowych w katalogu Polski, Niemiec i Austrii, w zależności od wielkości ruchu projektowego (log N, wyrażonego w osiach 100 kN),
- trwałości według Instytutu Asfaltowego i Shella dla dwóch kryteriów: asfaltowego i podłoża gruntowego, wzięte z opracowania [6],
- obliczone trwałości zmęczeniowe według wzorów AASHTO 2004 dla jednego kryterium – asfaltowego, przy ilości spękań FC=10% i FC = 20%.
Rys. 3.18. Porównanie grubości warstw asfaltowych nawierzchni o podbudowach z kruszywa łamanego (sprowadzonych do 20 cm) Polski, Austrii i Niemiec oraz kryteriów zmęczeniowych Instytutu Asfaltowego, Shella i AASHTO 2004.

Z rys. 3.18 widać, że kryteria AASHTO 2004, przy spękaniach $FC = 10\%$ oraz $FC = 20\%$ dość dobrze odpowiadają grubościom nawierzchni w Austrii i Niemczech. Nawierzchnie polskie są wyraźnie grubsze.

Wyraźne załamanie krzywych zmęczeniowych AASHTO 2004, przy $H_{asf}=10$ cm wynika ze specyfiki kryteriów AASHTO 2004, które uwzględniają fakt, że nawierzchnie cienkie pracują w warunkach kontrolowanego odkształcenia, a grubse w warunkach kontrolowanego naprężenia, co wyjaśniają bardziej szczegółowo artykuły [8,13]. Zwrócono już na to uwagę w rozdziale 3.4.2.4. Powoduje to wzrost trwałości zmęczeniowych bardzo cienkich warstw asfaltowych. W projektowaniu to załamanie nie ma istotnego znaczenia, ponieważ przy małym ruchu dominuje kryterium podłoża gruntowego.
3.4.2.12. Porównanie grubości warstw asfaltowych obliczonych z kryteriów AASHTO 2004 z nawierzchniami katalogowymi na podbudowach asfaltowych ułożonych wprost na wzmocnionym podłożu (typ „full depth pavement”)

Porównano nawierzchnie katalogowe Polski, Niemiec i przyjęte według metody Wielkiej Brytanii na podbudowie asfaltowej ułożonej wprost na wzmocnionym podłożu. Grubości warstw asfaltowych według Instytutu Asfaltowego i Shella dla dwóch kryteriów: asfaltowego i podłoża gruntowego, wzięto z opracowania [6]. Grubości warstw asfaltowych według wzorów AASHTO 2004 obliczono tylko dla jednego kryterium – asfaltowego, przy ilości spękań FC= 5%, FC= 10%, FC= 15% i FC= 20%.

Założenia obliczeniowe:

Konstrukcja nawierzchni:
- warstwy asfaltowe E = 10 000 MPa, ν=0,3; grubości zmienne od 5 do 40 cm,
- wzmocnione podłoże E = 100 MPa ν=0,35.

Warstwy asfaltowe:
- zawartość objętościowa asfaltu V_a = 10%,
- zawartość wolnych przestrzeni V_v = 8%.

Obciążenie:
- obciążenie pojedynczym kołem: 50 kN,
- ciśnienie kontaktowe q = 650 kPa.

Obliczenia:
Wykonano obliczenia odkształceń na spodzie warstw i trwałości zmęczeniowej według wzorów AASHTO 2004. Moduł podłoża przyjęto w obliczeniach jako E = 100 MPa, aby wyniki można było porównywać z polskim Katalogiem 1997, do opracowania którego przyjęto także moduł 100 MPa.

Wyniki:
Na rys. 3.19 pokazano:
- grubości warstw asfaltowych w katalogu Polski, Niemiec i Wielkiej Brytanii, w zależności od wielkości ruchu projektowego (log N),
- trwałości według Instytutu Asfaltowego i Shella dla dwóch kryteriów: asfaltowego i podłoża gruntowego, wzięte z opracowania [6],
- obliczono trwałości zmęczeniowe według wzorów AASHTO 2004 dla jednego kryterium – asfaltowego, przy ilości spękań FC 5%; 10%,15% i 20%.
Rys. 3.19. Porównanie grubości warstw asfaltowych nawierzchni o podbudowach asfaltowych ułożonych wprost na wzmocnionym podłożu Polski, Niemiec i Wielkiej Brytanii oraz kryteriów zmęczeniowych Instytutu Asfaltowego, Shella i AASHTO 2004

Z rys. 3.19 widać, że:
- nawierzchnie polskie są najgrubsze i leżą wzdłuż krzywych wyznaczonych z kryterium Instytutu Asfaltowego,
- nawierzchnie niemieckie są najcieńsze i leżą przy krzywych wyznaczonych z kryterium Shella,
- grubość nawierzchni brytyjskich znajdują się pomiędzy polskimi i brytyjskimi,
- z kryterium AASHTO 2004 otrzymano grubości zbliżone do niemieckich przy założonej ilości spękań FC=5% do FC=10%.

Wykonano dodatkowe obliczenia po zwiększeniu modułu podłoża ze 100 MPa do 120 MPa i otrzymano wyniki zbliżone do wyżej omówionych.

3.4.2.13. **Wnioski dotycząc kryterium asfaltowego AASHTO 2004**

2. Do dalszej analizy można przyjąć wstępnie kryterium AASHTO 2004 przy poziomie spękań zmęczeniowych około FC = 10% dla nawierzchni na podbudowach z kruszywa łamanego niezwiązewanego i FC około 5 do 10%
dla nawierzchni o podbudowach asfaltowych ułożonych wprost na wzmocnionym podłożu.

3.4.3. Kryterium AASHTO 2004 dla deformacji trwałych

Jest to kryterium opisane w raporcie [2], str. 3.3.46 – 3.3.65. Procedura obliczania głębokości koleiny wymaga bardzo złożonych danych, niedostępnych w Polsce. Z tego powodu kryterium tego nie brano pod uwagę. W procesie weryfikacji Katalogu (1997) stosowano kryterium deformacji strukturalnych (podłoża gruntowego) z metody Instytutu Asfaltowego.

3.4.4. Kryterium AASHTO dotyczące spękań zmęczeniowych warstw związanych hydraulicznie

Wzór na obliczanie trwałości zmęczeniowej CSM ma postać:

$$\log N_f = \frac{0,972\beta c_1 - \left(\frac{\sigma_t}{MR}\right)}{0,0825 \cdot \beta c_2}$$

(3.14)

gdzie:

- N_f – liczba powtarzalnych obciążeń do spękań zmęczeniowych w warstwie CSM,
- σ_t – maksymalne naprężenia rozciągające wywołane na spodzie warstwy CSM,
- MR – wytrzymałość na zginanie warstwy, („Modulus of Rupture”).
- $\beta c_1, \beta c_2$ – terenowe współczynniki kalibracyjne,

Ze względu na strukturę wzoru, który jest bezwymiarowy, wartości σ_t i MR mogą być wyrażone zarówno w „MPa” jak i w „psi”.

Model ten nie był kalibrowany w terenie i dlatego przyjęto, że współczynniki kalibracyjne są równe 1:

$$\beta c_1 = 1$$
$$\beta c_2 = 1$$

(3.15)

W ostatnich latach dokonano pewnej kalibracji tego modelu, co uwzględniono w rozdziale 7 niniejszego opracowania.

Analiza obliczeniowa w metodzie AASHTO 2004 prowadzona jest co każdy kolejny okres 2 – 4 tygodni. Po każdym okresie obliczana jest szkoda
zmęczeniowa i sumowana. Dla każdego kolejnego okresu obliczany jest nowy moduł sprężystości warstwy związanej spoiwem hydraulicznym. Moduł jest zmniejszany z uwzględnieniem szkody zmęczeniowej. Stosowany jest następujący wzór:

\[
E_{CSM}(t) = E_{CSM}(min) + \frac{E_{CSM}(max) - E_{CSM}(min)}{1 + e^{-4+14D}}
\]

(3.16)

gdzie:

- \(E_{CSM}(t) \) – nowy moduł warstw CSM przy poziomie szkody \(D \), w psi lub MPa,
- \(E_{CSM}(max) \) – maksymalny moduł warstwy CSM, nieuszkodzonej przez spękania, w psi lub MPa,
- \(E_{CSM}(min) \) – minimalny moduł warstwy CSM, całkowicie spękanej, w psi lub MPa.
- \(D \) – poziom szkody warstwy CSM, w formie ułamka, np.: \(D = 0,6 \).

Empiryczny związek pomiędzy ilością spękań warstwy CSM a szkodą zmęczeniową jest zdefiniowany następująco:

\[
C = \frac{1000}{1 + e^{1-D}}
\]

(3.17)

gdzie:

- \(C \) – miara ilości spękań warstwy CSM wyrażona w stopach liniowych długości spękań na 500 stóp bieżących pasa ruchu,
- \(D \) – poziom szkody zmęczeniowej warstwy CSM, w formie ułamka dziesiętnego, np.: \(D = 0,6 \).

Model dla CSM nie został skalibrowany, dlatego nie przeprowadzono oceny poziomu pewności modelu. Kalibracja jest bardzo trudna, bo spękania warstw CSM, przykrytych warstwami asfaltowymi, są niewidoczne.

Po podstawieniu do wzoru (3.14) współczynników \(\beta_{C1} = 1 \); \(\beta_{C2} = 1 \) i po przekształceniach otrzymano wzór:

\[
\log N_f = 11,782 - 12,1212 \frac{\sigma_L}{MR}
\]

(3.18)

Jest to znany wzór American Concrete Institute, adaptowany wiele lat temu przez Dempsey’a i wsp. do podbudów związanych cementem [14] i opisany w pracach Judyckiego [7,15]. Wzór w tej postaci był stosowany do opracowania polskiego Katalogu (1997). Przy często stosowanym w Polsce oznaczeniu wytrzymałości na zginanie \(R_{zg} \) wzór ma postać:
gdzie:

- \(N_f \) – liczba powtarzalnych obciążeń do spękań zmęczeniowych w warstwie związanej spojewem hydraulicznym,
- \(\sigma_t \) – maksymalne naprężenia rozciągające wywołane na spodzie warstwy związanej spojewem hydraulicznym, przy jej zginaniu przez koła pojazdów,
- \(R_{zg} \) – wytrzymałość na zginanie warstwy związanej spojewem hydraulicznym.

3.4.4.1. Analiza wzorów kryterium AASHTO dotyczących spękań zmęczeniowych warstw związanych spojewem hydraulicznym

Rys. 3.20 przedstawia zależność trwałości zmęczeniowej warstwy związanej spojewem hydraulicznym \(N_f \) od wskaźnika wytrzymałościowego (ilorazu \(\sigma_t / R_{zg} \)), zgodnie ze wzorem (19). Trwałość \(N_f \) jest bardzo wrażliwa na wzrost naprężeń, a także na wzrost wytrzymałości i spada o ponad 10 razy, przy wzroście ilorazu \(\sigma_t / R_{zg} \) o 0,1.

Rys. 3.21 przedstawia zmianę modułu sprężystości warstwy E ze wzrostem szkody zmęczeniowej D, zgodnie ze wzorem (16). Przyjęto dane jak dla polskiego chudego betonu o średniej wytrzymałości na sciskaniu \(R_c = 7,5 \) MPa, module maksymalnym bezpośrednio po wykonaniu \(E_{max} = 13 \) 000 MPa i module minimalnym po wystąpieniu intensywnych spękań \(E_{min} = 500 \) MPa. Od szkody zmęczeniowej \(D = 0,15 \) zaczyna się ostry spadek modułu. W miarę wzrostu szkody D warstwa ulega degradacji, spękaniom i moduł warstwowy spada.
Rys. 3.21. Spadek modułu warstwy związanego hydraulicznie (chudego betonu) E w zależności od szkody zmęczeniowej D.

Rys. 3.22 pokazuje ilość spęków C w warstwie związanej spoiwem hydraulicznym w zależności od szkody zmęczeniowej D, zgodnie ze wzorem (17). Jest ciekawe, że przy D = 0 otrzymuje się ze wzoru (17) 269 stóp spęków na 500 stóp bieżących pasa ruchu. Można to wyrazić jako 537 mb spęków na 1000 mb pasa ruchu. Nie ma w raporcie [2] wyjaśnienia tej sprawy. Teoretycznie przy szkodzie zmęczeniowej D = 0 nie powinno być żadnych spęków zmęczeniowych. Można tylko spekulować, że być może jest to uwzględnienie spęków skurczowych i termicznych, które pojawiają się zawsze w podbudowach związanych spoiwem hydraulicznym wkrótce po wykonaniu. Można łatwo obliczyć, że 269 stóp spęków na 500 stóp bieżących pasa ruchu (jak na rys. 3.22 przy D = 0), oznaczałoby, że spękania skurczowe w warstwie związanej spoiwem hydraulicznym wystąpiły krótko po wybudowania co około 6,5 m, przy szerokości pasa ruchu 3,5 m. Jest to całkowicie prawdopodobne.
3.4.4.2. Wnioski dotyczące kryterium dla podbudów związanych spoiwami hydraulicznymi

1. Kryterium podane w AASHTO 2004 to znany wzór American Concrete Institute, adaptowany przez Dempsey’a i wsp. [14] i opisany w pracy Judyckiego [7]. Wzór w tej postaci był stosowany do opracowania polskiego Katalogu (1997).

2. Kryterium AASHTO 2004 nie zostało skalibrowane i jego pewność nie jest znana.

3.5. Opis kryteriów użytych we francuskiej metodzie projektowania konstrukcji nawierzchni

3.5.1. Wprowadzenie

Celem niniejszej rozdziału jest przedstawienie głównych założeń metody francuskiej w zakresie kryteriów zmęczeniowych wraz z jej dostosowaniem do warunków polskich. Dostępne opisy metody francuskiej są napisane w sposób mało przystępny, co utrudnia jej zrozumienie i analizę. W anglojęzycznych publikacjach na temat metody francuskiej brakuje uporządkowanego opisu wszystkich niezbędnych parametrów do projektowania. Często brakuje też jednoznacznego opisu przyjętych założeń. Ponadto francuska klasyfikacja materiałów odbiega w niektórych elementach bardzo istotnie od klasyfikacji polskiej. Przykładem mogą być warstwy związane spoiwami hydraulicznym, w różny sposób klasyfikowane we Francji i w Polsce. Utrudniło to w dużej mierze opracowanie niniejszego rozdziału.

Podejście do projektowania konstrukcji nawierzchni przyjęte przez Francuską Dyrekcję Drogową (katalogi typowych nawierzchni – pierwsze wydanie 1971 [21], zmieniony w 1977 [22] i poprawiony w 1988 [23]), zakładało realizację następujących głównych celów:

- Ustanowić strategię techniczno-ekonomiczną, która byłaby prawidłowa dla całego narodowego systemu drogowego oraz zapewniałaby jednolity standard jakości dróg,
- Zapewnić podmiotom doradczym oraz rządowym agencjom technicznym rozwiązania techniczne, które byłyby jasne i jednoznacznie zdefiniowane i porównywalne,
- Oszczędzić projektantom żmudnych obliczeń w czasach, gdy dostęp do możliwości obliczeniowych był mocno ograniczony.

Decyzje podjęte przy tworzeniu katalogów, opierały się na wiedzy empirycznej oraz racjonalnych założeniach mechaniki nawierzchni, często bazujących na analogiach by uzupełnić niedobory części danych. Starano się zapewnić szeroki wybór rozwiązań, które nie wymagałyby wyjaśnienia skomplikowanych metod projektowania.

W latach poprzedzających wydanie aktualnego katalogu francuskiego zmienił się kontekst techniczno-ekonomiczny. Podstawowymi zmianami były:

- Standaryzacja materiałów nawierzchni, poprzez zmianę opisu materiałów na charakterystykę funkcjonalną. Konieczne było wytłumaczenie w jaki sposób grubości warstw uzależnione są nawierzchni od nowego opisu materiałów.
Przedstawienie jednego podejścia do rozwiązań technicznych oraz zapewnienie powszechnych narzędzi pozwalających na obiektywną ocenę rozwiązań proponowanych przez projektantów.

Umożliwienie wykorzystania innowacji w technice budowy dróg. Podejście przyjęte w obecnie obowiązującym francuskim katalogu opiera się na racjonalnym podejściu, wykorzystującym rezultaty mechaniki konstrukcji.

3.5.2. Francuskie kryterium spękań zmęczeniowych warstw asfaltowych

3.5.2.1. Podstawowe zależności

Kryterium francuskie [4], [5], [17] podane jest jako następujący wzór ogólny:

\[\varepsilon_{i,ad} = \varepsilon(NE, \theta_{eq}, f) \cdot k_r \cdot k_c \cdot k_s \]

(3.20)

gdzie:

- \(\varepsilon_{i,ad} \) – dopuszczalne poziome odkształcenie rozciągające, określone na dolnej powierzchni warstw asfaltowych
- \(\varepsilon(NE, \theta_{eq}, f) \) – odkształcenie rozciągające, dla którego z 50% prawdopodobieństwem następuje zniszczenie zginanej próbki, otrzymane po NE cyklach obciążenia, w temperaturze ekwiwalentnej, przy częstotliwości charakterystycznej dla naprężeń występujących w rozważanej warstwie,
- \(k_r \) – współczynnik ryzyka,
- \(k_c \) – współczynnik materiału,
- \(k_s \) – współczynnik podłoża.

Prawo zmęczeniowe dla materiałów asfaltowych jest przedstawione przy pomocy wzoru:

\[\varepsilon(NE, \theta_{eq}, f) = \varepsilon_6(\theta_{eq}, f) \left(\frac{NE}{10^6} \right)^b \]

(3.21)

gdzie:

- \(\varepsilon_6(\theta_{eq}, f) \) – odkształcenie rozciągające, przy którym z 50% prawdopodobieństwem zachodzi zniszczenie próbki przy zginaniu po \(10^6 \) cyklach, w zadanej temperaturze ekwiwalentnej \((\theta_{eq}) \) oraz dla zadanej częstotliwości \((f) \)
- \(\text{NE} \) – ilość obciążeń osią standardową,
- \(b \) – nachylenie krzywej zmęczeniowej materiału w układzie współrzędnych \(\log \varepsilon - \log N \).
Podstawowym badaniem do określenia wartości modułu E (w 15°C i 10Hz) oraz odkształcenia rozciągającego ε_6 (w 10°C i 25 Hz) jest test kontrolowanego odkształcenia. Schematem badania jest zginanie wspornikowe belki trapezowej. Badanie ilustruje rysunek 3.23.

Rysunek 3.23. Badanie zginania wspornikowego belki trapezowej, wg [5].

W przypadku braku dokładnych danych laboratoryjnych dotyczących ε_6 dla badanej mieszanki mineralno-asphaltowej w żądanych temperaturach, możliwe jest wyznaczenie wymaganego parametru w oparciu o następujący wzór:

$$\varepsilon_6(\theta) \cdot E(\theta)^{0.5} = \text{const}$$

gdzie:
- $\varepsilon_6(\theta)$ – odkształcenie przy którym z 50% prawdopodobieństwem zachodzi zniszczenie próbki przy zginaniu po 10^6 cyklach w zadanej temperaturze (θ),
- $E(\theta)$ – moduł sprężystości Younga w zadanej temperaturze (θ).

Zależność ta jest spełniona dla stałej częstotliwości (f), w przypadku gdy rozpatrywana konstrukcja nawierzchni pracuje w klimacie umiarkowanym, w temperaturach powyżej 0°C, dla typowych częstotliwości obciążenia nawierzchni od 10 do 25 Hz (~15-30 km/h).

Zależność ta nie obowiązuje dla:

- bardzo niskich i wysokich temperatur,
- bardzo zróżnicowanych charakterystycznych częstotliwości obciążenia (bardzo wolny ruch, warstwy ścieralne),
• materiałów o właściwościach reologicznych, innych niż tradycyjne materiały asfaltowe.

Dla typowych warunków wzór otrzymuje następującą postać:

\[
\varepsilon(NE, \theta_{eq}, f) = \varepsilon_0(10^\circ C, 25Hz) \cdot \left[\frac{E(10^\circ C)}{E(\theta_{eq})} \right]^{0.5} \cdot \left(\frac{NE}{10^6} \right)^b
\]

(3.23)

go ostatecznie daje wzór:

\[
\varepsilon_{i,ad} = \varepsilon_0(10^\circ C, 25Hz) \cdot \left[\frac{E(10^\circ C)}{E(\theta_{eq})} \right]^{0.5} \cdot \left(\frac{NE}{10^6} \right)^b \cdot k_r \cdot k_c \cdot k_s
\]

(3.24)

a przekształcając do obliczeń według metody stosowanej weryfikacji katalogu:

\[
NE = \left\{ \frac{\varepsilon_{i,ad}}{\varepsilon_0(10^\circ C, 25Hz) \cdot \left[\frac{E(10^\circ C)}{E(\theta_{eq})} \right]^{0.5} \cdot k_r \cdot k_c \cdot k_s} \right\}^{1/b} \cdot 10^6
\]

(3.25)

3.5.2.2. Współczynniki modyfikujące trwałość zmęczeniową konstrukcji

W przedstawionych powyżej wzorach występują następujące współczynniki modyfikujące trwałość zmęczeniową konstrukcji:

\(k_r \) – współczynnik ryzyka dostosowujący odkształcenie dopuszczalne („working strain”) do dobranego ryzyka, wyznaczonego na podstawie odchylenia standardowego grubości warstwy nawierzchni (Sh) oraz wyników testów zmęczeniowych (SN),

\(k_c \) – współczynnik dostosowujący wyniki obliczeń do rzeczywistego zachowania danego materiału na drodze,

\(k_s \) – współczynnik redukcji, uwzględniający efekt miejscowego braku zdolności do przenoszenia obciążeń warstwy znajdującej się pod warstwą rozpatrywaną (pod warstwą asfaltową lub związaną spośród hydraulicznym).

Metodyka obliczania poszczególnych współczynników została podana poniżej.

Współczynnik ryzyka \(- k_r \)

Wzór na współczynnik związany z ryzykiem, redukujący dopuszczalne naprężenie, a przy tym trwałość nawierzchni, przedstawia się następująco:

\[
k_r = 10^{-u \delta b}
\]

(3.26)
gdzie:
u – losowa wariancja rozkładu normalnego związanego z ryzykiem r,
δ – odchylenie standardowe łączące odchylenia standardowe: grubości warstw nawierzchni (Sh) oraz testów zmęczeniowych (SN),
b – nachylenie krzywej zmęczeniowej materiału w układzie logE - logN.

Metoda francuska podaje następującą definicję „ryzyka obliczonego”:
„Ryzyko obliczone „x%” na okres „p” lat oznacza, że z prawdopodobieństwem (x%), w okresie „p” lat, bez wykonywania zabiegów wzmacniających nawierzchni drogowej, pojawią się takie zniszczenia, że będzie wymagana całkowita rekonstrukcja nawierzchni”.

Przykładowo, przyjęcie ryzyka 2% dla nawierzchni projektowanej na okres 30 lat oznacza, że istnieje dwu procentowa szansa, że nawierzchnia ulegnie w stopniu wymagającym całkowitej rekonstrukcji. Dobranie ryzyka w projektowaniu nawierzchni leży w gestii projektanta. Katalog francuski podaje typowe wartości, w zależności od stosowanego materiału oraz kategorii ruchu. W tablicy 3.1 przedstawiono zestawienie ryzyka przyjętego do obliczeń dla ruchu według klasyfikacji francuskiej.

<table>
<thead>
<tr>
<th>Kategoria ruchu (FR)</th>
<th>Ryzyko dla nawierzchni podatnych</th>
<th>Ryzyko dla nawierzchni półśtywnych (jedna faza pracy)</th>
<th>Ryzyko dla nawierzchni półśtywnych (dwie fazy pracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>25%</td>
<td>12%</td>
<td>35%</td>
</tr>
<tr>
<td>T2</td>
<td>12%</td>
<td>7,5%</td>
<td>20%</td>
</tr>
<tr>
<td>T1</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>T0</td>
<td>2%</td>
<td>2,5%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Pozostałe parametry konieczne do wyznaczenia współczynnika związanego z ryzykiem zaprezentowano na rysunku 3.24.
Rysunek 3.24. Wyznaczanie odkształcenia dopuszczalnego ε_{ad} na podstawie testów zmęczeniowych [4], [5].

Parametr u (losowa wariancja rozkładu normalnego związanego z ryzykiem r) określany jest na podstawie tablic załączonych do katalogu [17]. Przyjęte wartości u w zależności od przyjętego ryzyka przedstawiono poniżej w tablicy 3.2.

<table>
<thead>
<tr>
<th>u</th>
<th>-2,05</th>
<th>-1,96</th>
<th>-1,881</th>
<th>-1,65</th>
<th>-1,439</th>
<th>-1,28</th>
<th>-1,175</th>
<th>-0,84</th>
<th>-0,674</th>
<th>-0,385</th>
</tr>
</thead>
<tbody>
<tr>
<td>ryzyko (r) %</td>
<td>2%</td>
<td>2,5%</td>
<td>3%</td>
<td>5%</td>
<td>7,5%</td>
<td>10%</td>
<td>12%</td>
<td>20%</td>
<td>25%</td>
<td>35%</td>
</tr>
</tbody>
</table>

Odchylenie standardowe δ, łączące odchylenia standardowe grubości warstwy nawierzchni (Sh) oraz wyników testów zmęczeniowych (SN), określone jest następującym wzorem:

$$\delta = \left[SN^2 + \left(\frac{c^2}{b^2} \right) \cdot Sh^2 \right]^{0.5} \quad (3.27)$$

gdzie:
SN – odchylenie standardowe liczby cykli (w skali logarytmicznej), prowadzących do zniszczenia przez zmęczenie materiału,
c – współczynnik łączący wariancję odkształcenia (naprężenia) w nawierzchni z losową wariancją grubości Δh, (log ε = logε0 – cΔh),
-1/b – nachylenie krzywej zmęczeniowej materiału w układzie współrzędnych logε - logN,
Sh – odchylenie standardowe grubości nawierzchni.

Współczynniki SN oraz b są parametrami materiałowymi. Wartość SN dla materiałów asfaltowych zawiera się w przedziale od 0,25 do 0,4. Szczegółowe wartości zostaną przedstawione w sekcji materiałowej. Wartość współczynnika -1/b dla materiałów asfaltowych wynosi 5 dla każdego typu mieszanki.
Współczynnik c dla typowych konstrukcji przyjmuje stałą wartość wynoszącą w przybliżeniu 0,02 cm⁻¹.

Współczynnik Sh przyjmowany jest w zależności od stosowanego materiału i przedstawia się następująco:
- dla cienkich warstw asfaltowych Sh = 1 cm,
- dla warstw podbudowy asfaltowej Sh przyjmuje wartość zależną od grubości nawierzchni według tablicy 3.3.

Tablica 3.3. Wartości współczynnika Sh dla podbudów w zależności od grubości nawierzchni [4], [5], [17].

<table>
<thead>
<tr>
<th>Grubość nawierzchni asfaltowej</th>
<th><10 cm</th>
<th>11 cm</th>
<th>12 cm</th>
<th>13 cm</th>
<th>14 cm</th>
<th>>15 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość współczynnika Sh</td>
<td>1,0</td>
<td>1,3</td>
<td>1,6</td>
<td>1,9</td>
<td>2,2</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Współczynnik materiałowy – kₙ

Współczynnik kₙ służy do dostosowania wyników modelu obliczeniowego do zaobserwowanego rzeczywistego zachowania się mieszanek na drodze. Tablica 3.4 przedstawia współczynniki dla materiałów asfaltowych stosowanych we Francji. Parametry typowych mieszanek francuskich przedstawione są w tablicy 3.9.
Tablica 3.4. Współczynniki materiałowe k_c dla materiałów asfaltowych [4], [5], [17].

<table>
<thead>
<tr>
<th>Materiał</th>
<th>Wartość współczynnika k_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beton asfaltowy o wysokim module sztywności, Enrobes a module eleve (EME)</td>
<td>1,0</td>
</tr>
<tr>
<td>Beton asfaltowy, Beton bitumuneux (BB)</td>
<td>1,1</td>
</tr>
<tr>
<td>Beton asfaltowy do podbudowy drogowej, Grave Bitume (GB)</td>
<td>1,3</td>
</tr>
</tbody>
</table>

Współczynnik podłoża – k_s

Jest to współczynnik redukujący, uwzględniający efekt miejscowego obniżenia nośności warstwy położonej poniżej rozpatrywanej warstwy nawierzchni. Wartości współczynnika, w zależności od modułu podano w tablicy 3.5.

Tablica 3.5. Wartości współczynnika k_s w zależności od modułu podłoża pod rozpatrywaną warstwą [4], [5], [17].

<table>
<thead>
<tr>
<th>Moduł warstwy podłoża poniżej rozpatrywanej nawierzchni</th>
<th>$E < 50$ MPa</th>
<th>50 MPa $< E < 120$ MPa</th>
<th>$E > 120$ MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość współczynnika k_s</td>
<td>1/1,2 (0,833)</td>
<td>1/1,1 (0,909)</td>
<td>1</td>
</tr>
</tbody>
</table>

3.5.2.3. Różnice pomiędzy kryteriami obecnie stosowanymi w Polsce, a kryterium francuskim

Projektowanie konstrukcji według metody francuskiej znacząco odbiega od metod stosowanych w obecnym polskim katalogu [1]. Inne jest zarówno podejście do samych kryterii, określania parametrów materiałowych, określania ruchu obciążającego drogę, jak i podejście do ryzyka zniszczeń konstrukcji na etapie projektowania. Aby móc zastosować metodę francuską w odniesieniu do polskich warunków należałoby przyjąć pewne założenia. **Celem niniejszego rozdziału jest określenie parametrów polskich mieszanek mineralno – asfaltowych oraz innych danych wejściowych do projektowania przyjmowanych w Polsce, w taki sposób, aby istniała możliwość przystosowania metody francuskiej do warunków polskich.**
Ruch

Podstawową różnicą występującą w opisie ruchu w Polsce i we Francji jest stosowanie innych osi standardowych. Osią standardową stosowaną we Francji jest oś 130 kN, natomiast w Polsce oś 100 kN. Kolejną znaczącą różnicą jest sposób obliczania ilości osi standardowych. W metodzie francuskiej zliczane są wszystkie pojazdy powyżej 3,5 tony, a następnie, aby otrzymać równoważną ilość osi standardowych, ich liczba jest przemnażana przez współczynnik agresywności CAM, zależny od obciążenia ruchem i typu nawierzchni. W podejściu polskim wyznacza się równoważną ilość osi standardowych mnożąc ilość pojazdów ciężarowych w trzech klasach przez odpowiednie współczynniki przeliczeniowe. Inny jest także okres obliczeniowy stosowany w projektowaniu. Podejście francuskie dopuszcza przyjęcie zarówno 30 jak i 20 lat eksploatacji drogi. Jest to zależne od rodzaju sieci drogowej. Dla sieci strukturalnej VRS (autostrady, drogi ekspresowe oraz ważniejsze drogi o znaczeniu krajowym) okres projektowy wynosi 30 lat. Dla sieci niestrukturalnej VRNS (pozostałe drogi) okres projektowy wynosi 20 lat. Podejście polskie dopuszcza tylko okres 20 lat. Porównania kategorii ruchu w Polsce i we Francji dokonano dla Średniorocznego Ruchu Dobowego (SRD). Wyniki przedstawiono w tablicy 3.6.

Tablica 3.6. Porównanie kategorii ruchu według katalogów polskiego i francuski [4], [5], [17].

<table>
<thead>
<tr>
<th>Kategoria ruchu (PL)</th>
<th>SRD – Średnioroczny Ruch Dobowy</th>
<th>Kategoria ruchu (FR)</th>
<th>SRD – Średnioroczny Ruch Dobowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilość osi (L) 100kN na dobę według katalogu polskiego</td>
<td>Ilość osi (MJA) 130kN na dobę według katalog francuskiego</td>
<td>Ilość osi (MJA) 130kN na dobę według katalog francuskiego</td>
<td></td>
</tr>
<tr>
<td>KR 1 0 – 12</td>
<td>T5</td>
<td>0 – 25</td>
<td></td>
</tr>
<tr>
<td>KR 2 13 – 70</td>
<td>T4</td>
<td>25 – 50</td>
<td></td>
</tr>
<tr>
<td>KR 3 71 – 335</td>
<td>T3</td>
<td>50 – 150</td>
<td></td>
</tr>
<tr>
<td>KR 4 336 – 1000</td>
<td>T2</td>
<td>150 – 300</td>
<td></td>
</tr>
<tr>
<td>KR 5 1001 – 2000</td>
<td>T1</td>
<td>300 – 750</td>
<td></td>
</tr>
<tr>
<td>KR 6 2001 i więcej</td>
<td>T0</td>
<td>750 – 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TS</td>
<td>2000 – 5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEX</td>
<td>5000+</td>
<td></td>
</tr>
</tbody>
</table>

MJA „Moyenne journalière annuelle” – Średnioroczny ruch dobowy

L Liczba osi obliczeniowych na dobę na pas

Poszczególne kategorie ruchu porównano ze sobą po sprowadzeniu ich do jednego rodzaju osi równoważnych (100kN). Zakresy polskich kategorii ruchu w pewnym stopniu pokrywały się z niższymi francuskimi kategorią ruchu.
Największe różnice zakresów wystąpiły dla najniższej kategorii ruchu oraz dla kategorii ruchu (T0, TS oraz TEX), które nie posiadają odpowiedników w Polsce. Parametry ryzyka dla ruchu polskiego przyjęto na podstawie francuskich kategorii ruchu, które dawały największe pokrycie zakresu polskiej kategorii ruchu. Przyjęte wartości przedstawia tablica 3.7.

Tablica 3.7. Przyjęta dla warunków polskich wartość ryzyka (r) w zależności od kategorii ruchu

<table>
<thead>
<tr>
<th>Kategoria ruchu (PL)</th>
<th>Ryzyko dla nawierzchni podatnych</th>
<th>Ryzyko dla nawierzchni półsztywnych (jedna faza pracy)</th>
<th>Ryzyko dla nawierzchni półsztywnych (dwie fazy pracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 1</td>
<td>25%</td>
<td>12%</td>
<td>35%</td>
</tr>
<tr>
<td>KR 2</td>
<td>25%</td>
<td>12%</td>
<td>35%</td>
</tr>
<tr>
<td>KR 3</td>
<td>25%</td>
<td>12%</td>
<td>35%</td>
</tr>
<tr>
<td>KR 4</td>
<td>12%</td>
<td>7,5%</td>
<td>20%</td>
</tr>
<tr>
<td>KR 5</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>KR 6</td>
<td>2%</td>
<td>2,5%</td>
<td>3%</td>
</tr>
</tbody>
</table>

3.5.2.4. Charakterystyka mieszanek mineralno-asfaltowych

Drugą istotną różnicą pomiędzy polską i francuską metodą wymiarowania nawierzchni jest opis stosowanych materiałów.

W przypadku metody francuskiej każdy materiał asfaltowy opisany jest następującymi parametrami:

- **E** – Moduł sprężystości Younga [MPa] (15°C oraz 10 Hz i temperaturze ekwiwalentnej (θ); dwupunktowe zginanie belki trapezowej w schemacie wspornikowym, w teście kontrolowanego odkształcenia)

- **E₆** – odkształcenie [ustrain] przy którym w konwencjonalnym teście zginania (dwupunktowe zginanie) następuje zniszczenie próbki testowej po 10⁶ cyklach z 50% prawdopodobieństwem (przy 10°C i 25 Hz)

- **-1/b** – nachylenie krzywej zmęczeniowej danego materiału w układzie współrzędnych logE - logN (stała materiałowa – dla wszystkich typowych mieszanek mineralno-asfaltowych przyjmuje wartość 5)

- **SN** – odchylenie standardowe liczby cykli (w skali logarytmicznej) prowadzących do zniszczenia przez zmęczenie materiału. Wartość odchylenia standardowego SN przedstawia tablica 3.8
Tablica 3.8. Wartości odchylenia standardowego SN w zależności od materiału [4], [5], [17].

<table>
<thead>
<tr>
<th>Materiał</th>
<th>Wartość odchylenia standardowego SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grave bitume klas 1 (GB1) (Podbudowa asfaltowa klasa 1)</td>
<td>0,4</td>
</tr>
<tr>
<td>Grave bitume klas 2 i 3 (GB2, GB3) (Podbudowa asfaltowa klasa 2 i 3)</td>
<td>0,3</td>
</tr>
<tr>
<td>Enrobes a module eleve klasa 1 (EME1) Beton asfaltowy o wysokim module sztywności klasy 1</td>
<td>0,3</td>
</tr>
<tr>
<td>Enrobes a module eleve klasa 2 (EME2) Beton asfaltowy o wysokim module sztywności klasy 2</td>
<td>0,25</td>
</tr>
<tr>
<td>Beton bitumineux (BB) Beton asfaltowy (warstwy wiążące, warstwy ścieralne)</td>
<td>0,25</td>
</tr>
</tbody>
</table>

W obecnie obowiązujących przepisach – Wytycznych Technicznych WT2 – 2010 [18], w których usunięto część dotyczącą projektowania funkcjonalnego dla większości mieszanek, oprócz jednej mieszanki (AC-WMS) można odczytać parametry częściowo odpowiadające opisowi materiałów według metody francuskiej. Podane są wymagania dotyczące modułu sztywności E [MPa] oraz ε_6 [µstrain] dla mieszanek mineralno – asfaltowych o wysokim module sztywności (AC – WMS). Są one jednak wyznaczane z innego schematu zginania niż w metodzie francuskiej i przy innych parametmach testu. W Polsce stosowane jest czteropunktowe zginanie przy 10 Hz i 10°C i wykonuje się test kontrolowanego odkształcenia. We Francji stosuje się zginanie wspornika – jest to tak zwane „zginanie dwupunktowe” i podobnie jak w Polsce test kontrolowanego odkształcenia. W przypadku mieszanek typu EME/AC - WMS parametry modułu sztywności oraz ε_6 z opisu polskiego oraz francuskiego pokrywają się. Fakt ten umożliwia stosowanie parametrów mieszanek polskich do obliczeń według metody francuskiej. Wykorzystując poprzednie polskie przepisy (WT2 2008 [19]), uzyskujemy parametry dla każdego typu mieszanki.

Parametry b oraz SN nie występują w żadnych polskich przepisach. Do dalszych obliczeń zostały przyjęte wartości z metody francuskiej podane dla mieszanek mineralno-ASFaltowych o zbliżonych parametrach. W tablicy 3.9 przedstawiono zestawienie parametrów mieszanek mineralno-ASFaltowych.
<table>
<thead>
<tr>
<th>Mieszanka (opis polski oraz odpowiadająca mieszanka francuska)</th>
<th>Parametry według metody francuskiej [4],[5]</th>
<th>Parametry według przepisów polskich (10Hz, 10°C) (wg. WT 2 2008 [19])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podbudowa Asfaltowa</td>
<td>E=7000-9000 [MPa] (\varepsilon_6=70-90) [µstrain] (-1/b = 5) (SN=0,3-0,4)</td>
<td>(E_{\text{min}}=11000) [MPa] (\varepsilon_6=115) [µstrain]</td>
</tr>
<tr>
<td>Grave Bitume klasy 1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warstwa wiązżąca/wyrównawcza</td>
<td>E=5000-12000 [MPa] (\varepsilon_6=100-110) [µstrain] (-1/b = 5) (SN=0,25)</td>
<td>(E_{\text{min}}=9000-11000) [MPa] (\varepsilon_6=115) [µstrain]</td>
</tr>
<tr>
<td>BBSG/BBME/BBM etc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warstwy ścieralne</td>
<td>Brak wymagań</td>
<td>Brak wymagań</td>
</tr>
<tr>
<td>BBTM/BBDr/BBMa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-WMS</td>
<td>E=14000 [MPa] (\varepsilon_6=100-130) [µstrain] (-1/b = 5) (SN=0,25-0,3)</td>
<td>(E_{\text{min}}=14000-16000) [MPa] (\varepsilon_6=130) [µstrain]</td>
</tr>
<tr>
<td>EME1/EME2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5.2.5. Porównanie kryterium Instytutu Asfaltowego oraz kryterium francuskiego

Na rysunku 3.25 przedstawiono porównanie wyników otrzymanych z kryterium francuskiego oraz z kryterium Instytutu Asfaltowego [10] dla identycznych parametrów mieszanki mineralno-asfaltowej:

GB3 – Beton asfaltowy do podbudowy drogowej klasy 3 – parametry materiałowe:

- Moduł sztywności w temperaturze 10°C \(E(10°C) = 12300\)MPa
- Moduł sztywności w temperaturze ekwiwalentnej \(\theta \) \(E(\theta=12°C) = 11000\)MPa
- Odkształcenie przy \(10^6\) cyklach obciążeń \(\varepsilon_6 = 90\) µstrain
- Nachylenie krzywej zmęczeniowej materiału \(-1/b = 5\)
Odchylenie standardowe \(SN = 0,3 \)
Współczynnik podłoża \(k_s = 0,909 \)
Współczynnik materiału \(k_c = 1,3 \)
Współczynnik ryzyka \(k_r \) – przyjmowane w zależności od ruchu według tablicy 3.1
Zawartość wolnych przestrzeni w mieszance mineralno - asfaltowej \(V_v = 9\% \)
Zawartość asfaltu w mieszanicy mineralno - asfaltowej \(V_B = 4,5\% \) (m/m)

Obciążenie:
Oś równoważna \(100 \text{ kN} \)
Ciśnienie kontaktowe \(650 \text{ kPa} \)

Rysunek 3.25. Porównanie kryteriów zmęczeniowych IA i francuskiego dla warstwy podbudowy z betonu asfaltowego

Na przedstawionym wykresie, kryterium francuskie oraz kryterium Instytutu Asfaltowego dają zbliżone wartości trwałości zmęczeniowych w zakresie odkształceń od \(\varepsilon = 35 \cdot 10^{-6} \) do \(\varepsilon = 100 \cdot 10^{-6} \). W przypadku odkształceń \(\varepsilon < 35 \cdot 10^{-6} \) kryterium francuskie daje mniejsze trwałości nawierzchni, natomiast w przypadku odkształceń \(\varepsilon > 100 \cdot 10^{-6} \), daje większe trwałości przy zastosowaniu tej samej mieszanki mineralno-asfaltowej. Skoki wykresu dla kryterium francuskiego wynikają z przyjęcia odpowiednich, zmiennych wartości ryzyka dla zadanego kategorii ruchu.
3.5.3. Kryterium kolein strukturalnych (kryterium odkształceń podłoża gruntowego) [4], [5], [17]

Kryterium to ma ogólną postać identyczną jak kryteria wykorzystywane przez inne ośrodki naukowe na świecie. Postać kryterium przedstawia poniższy wzór.

\[\varepsilon_p = k \cdot \left(\frac{1}{N} \right)^m \]

(3.28)

gdzie:
\(\varepsilon_p \) – pionowe odkształcenia ściskające wywołane na górnej powierzchni podłoża gruntowego,
\(N \) – liczba dopuszczalnych obciążeń osi standardowych,
k, m – współczynniki empiryczne.

W metodzie francuskiej współczynnik \(m \) przyjmuje wartość \(m = 0.222 \). Natomiast wartość współczynnika \(k \) jest wyznaczana w zależności od obciążenia drogi ruchem. W przypadku ruchu lekkiego (T5 i T4) jego wartość wynosi \(k = 0.016 \). Dla ruchu średniego i ciężkiego (od T3 do TEX) przyjmuje wartość \(k = 0.012 \).

Przekształcona postać wzorów jest następująca:

Dla T5 i T4:

\[NE = \left(\frac{\varepsilon_p}{0.016} \right)^{\frac{1}{0.222}} \]

(3.29)

Dla T3 – TEX

\[NE = \left(\frac{\varepsilon_p}{0.012} \right)^{\frac{1}{0.222}} \]

(3.30)

W przypadku niskich kategorii ruchu, różnice w trwałości są na poziomie nawet jednego rzędu wielkości.
Rysunek 3.26. Porównanie trwałości zmęczeniowej dla kolein strukturalnych uzyskiwanych z kryteriów zmęczeniowych dla deformacji strukturalnych wg. metody francuskiej i Instytutu Asfaltowego

3.5.4. Kryteria dla nawierzchni półsztywnych [4], [5], [17]

Katalog francuski podaje metody wymiarowania trzech różnych typów nawierzchni półsztywnych, posiadających wśród warstw konstrukcyjnych warstwę z kruszywem/gruntem związane spoiwem hydraulicznym. Są to odpowiednio:

1. **Nawierzchnie półsztywne (semi-rigide, chaussees a assise traitee aux liants hydrauliques)**
 Typowa konstrukcja: pakiet wierzchnich warstw asfaltowych (6-14cm); podbudowy z materiałów związanych spoiwami hydraulicznymi (20-50cm). Stosowane materiały związane spoiwami hydraulicznymi posiadają wyższą wytrzymałość oraz moduł sprężystości od stosowanych w nawierzchniach kompozytowych. Konstrukcje te stanowią 38% wszystkich konstrukcji we Francji.

2. **Nawierzchnie kompozytowe (chassee a structure mixte)**
 Typowa konstrukcja: pakiet wierzchnich warstw asfaltowych (2-8cm), warstwa podbudowy z materiałów asfaltowych (10-20cm), warstwa podbudowy z materiałów związanych spoiwami hydraulicznymi (20-40cm). Stosunek grubości wszystkich warstw asfaltowych do sumy grubości warstw asfaltowych i warstw związanych spoiwem hydraulicznym nie mniejszy od 50%. W oryginalnej nazwie francuskiej w opracowaniu [25] użyto określenia „chaussees a structure mixte” = **nawierzchnia o konstrukcji mieszanej**. W tłumaczeniu na język angielski w opracowaniu [4] użyto określenia „composite pavement structure” = nawierzchnia o
konstrukcji kompozytowej. Dalej używana będzie nazwa „konstrukcja kompozytowa”. Konstrukcje te stanowią 5% wszystkich konstrukcji we Francji.

3. Nawierzchnie odwrócone (chaussees a structure inverse)
Typowa konstrukcja: pakiet wierzchnich warstw asfaltowych (2-8cm), warstwa podbudowy z materiałów asfaltowych (10-20cm), warstwa kruszywa niezwiązana (ok 12cm), warstwa z materiałów związanych spojwami hydraulicznymi (15-50cm)

Przykładowe konstrukcje poszczególnych typów przedstawiono na rysunku 3.27.

Rysunek 3.27. Przykładowe konstrukcje nawierzchni z warstwą związaną spojwami hydraulicznymi [4], [5].

Podejście do projektowania różnych typów nawierzchni na podbudowach związanych spojwami hydraulicznymi

Wybór jednego z powyższych typów nawierzchni wiąże się ze stosowaniem odpowiednich kryteriów zmęczeniowych oraz stosowanych do nich różnych założeń obliczeniowych.

Według metody francuskiej do wymiarowania nawierzchni półsztywnych przyjmuje się następujące podejście:

- **Nawierzchnie półsztywne – rys. 3.27a.** Dla nawierzchni, w której grubość warstw asfaltowych jest mniejsza od połowy grubości konstrukcji (czyli od połowy łącznej grubości warstw asfaltowych i warstw związanych spojwem hydraulicznym), należy stosować wymiarowanie jak dla nawierzchni półsztywnej przedstawionej w paragrafie 1 i pokazanej na rys. 32a. Warstwy związane spojwem są wymiarowane dla jednej fazy pracy, do wystąpienia spękań zmęczeniowych w podbudowie związanej spojwem hydraulicznym. Warunkiem projektowym jest zachowanie trwałości (brak spękań zmęczeniowych) w warstwie związanej spojwem hydraulicznym po przejściu całkowitego ruchu obliczeniowego w okresie eksploatacji.

- **Nawierzchnie kompozytowe (lub „mieszane”) – rys. 3.27b.** Dla nawierzchni, w której grubość warstw asfaltowych jest większa lub równa
od połowy całej grubości konstrukcji (to znaczy od połowy łącznej grubości warstw asfaltowych i warstwy podbudowy zasadniczej, związanych spojwem hydraulicznym – jedno lub dwuwarstwowej), należy stosować wymiarowanie jak dla konstrukcji przedstawionej w paragrafie 2 i pokazanej na rys. 3.27b. Warstwy związane spojwami hydraulicznymi są wymiarowane dla dwóch faz pracy. Na końcu pierwszej fazy pracy występują spękania zmęczeniowe warstwy podbudowy związanej spojwem hydraulicznym. W drugiej fazie pracy warstwy asfaltowe spoczywają na podbudowie spękanej o mniejszej nośności. Koniec fazy drugiej to wystąpienie spękań w warstwach asfaltowych. Warunkiem projektowym jest zachowanie braku spękań zmęczeniowych w warstwach asfaltowych po przejęciu całkowitego ruchu obliczeniowego w okresie eksploatacji. Projektowanie tych nawierzchni jest w swej istocie takie samo jak dotychczasowe dwuetapowe projektowanie nawierzchni półsztywnych w Polsce.

- **Nawierzchnie odwrócone rys. 3.27c** Są to nawierzchnie, które składają się z trzech warstw (warstwy asfaltowe, kruszywo niezwiązane oraz warstwa związana spojwem hydraulicznym) pełniących konkretne funkcje. Warstwy są wymiarowane dla jednej fazy pracy, do wystąpienia spękań w warstwach bitumicznych. Nawierzchnie odwrócone nie są stosowane w Polsce i nie będą dalej omawiane w niniejszym opracowaniu.

3.5.4.1. Kryteria dla nawierzchni półsztywnych z podbudową z materiałów związanych spojwami hydraulicznymi [4], [5], [17]

Katalog francuski rozróżnia dwa typy konstrukcji półsztywnych z podbudową z materiałów związanych spojwami hydraulicznymi. Są to konstrukcje z jedną lub dwiema warstwami podbudowy, wykonanymi z materiału связаного spojwem hydraulicznym. Takie podejście wymaga przyjęcia w każdym z tych przypadków innych założeń obliczeniowych.

Konstrukcje półsztywne z jedną warstwą podbudowy z materiału связаного spojwem hydraulicznym

Warstwy podbudowy w takiej konstrukcji nie można traktować jako warstwy ciągłej. W miejscach nieciągłości poprzecznych nawierzchni, powstających w skutek spękań skurczowych lub nacięć w czasie budowy, następuje bardzo duże zwiększenie odkształceń przekazywanych na podłoże. Powoduje to, że naprzężenia w podłożu są niezbędnym elementem w obliczeniach trwałości tego typu nawierzchni. Jako że istnieją duże problemy z dokładnym oszacowaniem przekazywania obciążeń przy spękania przed wybudowaniem drogi, przyjmuje się pewne minimalne wartości grubości warstwy podbudowy z materiału связаного spojwem hydraulicznym:

- 25 cm dla materiałów klasy G2 i G3 (wg Norm serii PN-EN 14227) dla ruchu NE > 10⁶,
- 12 cm dla ruchu bardzo lekkiego (dla ruchu NE < 10⁶).
Konstrukcje półsztywne z dwiema warstwami podbudowy z materiałem związanym spojwem hydraulicznym

Pomimo, że w konstrukcjach tego typu występują spękania skurczowe, traktuje się je jako ciągłą konstrukcję. Wynika to z przyjęcia następujących założeń:

- Spękania skurczowe nie pojawiają się zwykle w tym samym miejscu w obu warstwach stabilizowanych,
- Spękania zmęczeniowe nie rozwijają się ze wszystkich spękań skurczowych.

W modelowaniu mechanistycznym, nawierzchnia ta jest reprezentowana przez zestaw warstw sprężystych.

W przypadku gdy do podbudowy stosowane są materiały o bardzo dużej sztywności (np. materiały klasy G4 i G5), należy uwzględnić wpływ nieciągłości poprzecznych. Wykonuje się to poprzez zastosowanie współczynnika k_d, zwiększającego naprężenia rozciągające przy zginaniu w warstwie związanej cementem, wyznaczone z modelowania konstrukcji ciągłej.

Także dla konstrukcji z dwiema warstwami podbudowy podane są minimalne grubości warstwy podbudowy pomocniczej (dolnej warstwy związanej spojwem hydraulicznym):

- Dla mieszanek kruszywa z żużlem, mieszanek kruszywa z popiołami lotnymi oraz mieszanek kruszywa, spoiw pucolanowych oraz wapna:
 o 15 cm dla ruchu T3 i T2,
 o 18 cm dla ruchu T1 i T0.
- Dla mieszanek kruszyw z cementem:
 o 15 cm dla ruchu T3,
 o 18 cm dla ruchu T2,
 o 20 cm dla ruchu T1 i T0.

Warstwa podbudowy zasadniczej (górna warstwa związana spojwem hydraulicznym) powinna mieć grubość nie mniejszą niż wartości podane wyżej dla podbudowy pomocniczej (dolnej warstwy podbudowy związanej spojwem hydraulicznym).

Szczeźność międzywarstwowa pomiędzy warstwami konstrukcji nawierzchni

Dla modelowania mechanistycznego należy przyjąć następujące rodzaje połączeń międzywarstwowych (zakładając, że nawierzchnię wykonano zgodnie ze sztuką budowlaną):

- Pomiędzy warstwami asfaltowymi a podbudowę zasadniczą z materiału związanego spojwem hydraulicznym – pełna szczepność międzywarstwowa.
• Pomiędzy warstwami podbudowy zasadniczej i pomocniczej (związanymi spojwami hydraulicznymi) szczepność międzywarstwowa zależy od stosowanego materiału:
 o Kruszywa z popiołami lotnymi, wapnem – brak szczepności (poślizg pomiędzy warstwami),
 o Kruszywa i mieszanki z iarnistego żużla – pełna szczepność międzywarstwowa,
• Pomiędzy warstwami podbudowy pomocniczej a podłożem gruntowym – pełna szczepność międzywarstwowa.

Kryteria projektowe

1. Zniszczenie ze względu na zmęczenie podbudowy związanej spojwem hydraulicznym,
2. Deformacje strukturalne.

Zniszczenie ze względu na zmęczenie podbudowy związanej spojwem hydraulicznym

Kryteria deformacji strukturalnych zostały omówione we wcześniejszej części opracowania, dotyczącej nawierzchni podatnych. Są one identyczne dla nawierzchni półsztywnych. Poniżej omówiono kryterium projektowe związane ze zniszczeniem ze względu na zmęczenie podbudowy związanej spojwem hydraulicznym.

W przypadku zniszczenia podbudowy związanej spojwem hydraulicznym kryterium francuskie wymaga sprawdzenia naprężeń rozciągających na spodzie każdej z zastosowanych warstw ze spojwem hydraulicznym. Obliczeń dokonuje się w jednym (jedna warstwa podbudowy związanej spojwem hydraulicznym) lub dwóch schematach (dwie warstwy podbudowy związanej spojwem hydraulicznym) i sprawdza czy wyznaczone naprężenia nie przekraczają wartości dopuszczalnych, obliczonych według kryterium zmęczeniowego.

Podstawowa wersja kryterium zmęczeniowego dla warstw związanych spojwem hydraulicznym, stosowanego we Francji, przedstawiona jest wzorem:
\[\sigma_{t,ad} = \sigma_{t,ad}(NE)k_r k_d k_c k_s \]
(3.31)

gdzie:
\(\sigma_{t,ad} \) – dopuszczalne poziome naprężenie rozciągające, dla spodu warstw z materiałów związanych spojwami hydraulicznymi,
\(\sigma_{t,ad}(NE) \) – naprężenie rozciągające przy którym następuje zniszczenie przy zginaniu próbki po 360 dniach dojrzewania po NE obciążeniach,
\(k_r \) – współczynnik ryzyka,
\(k_d \) – współczynnik uwzględniający efekt nieciągłości w warstwie podbudowy,
\(k_c \) – współczynnik materiału,
\(k_s \) – współczynnik podłoża.

Współczynniki: ryzyka, materiału oraz podłoża zostały omówione we wcześniejszej części opracowania dla nawierzchni podatnych, więc zostaną pominięte. Są one identyczne dla nawierzchni półsztywnych. Współczynnik \(k_d \), dopuszczający efekt nieciągłości warstwy podbudowy, przyjmuje jedną z dwóch wartości, w zależności od zastosowanego w podbudowie materiału:

1/1,25 (0,8) dla materiałów klas G4 i G5 związanych spojwem hydraulicznym (materiały o wysokich modułach sztywności E oraz wysokiej wytrzymałości R) oraz dla zagęszczonego betonu,
1 dla materiałów klas G2 i G3 związanych spojwem hydraulicznym.

Prawo zmęczeniowe dla materiałów związanych spojwami hydraulicznymi opisane jest wzorem:

\[\frac{\sigma}{f_f} = 1 + \beta \log N \]
(3.32)

gdzie:
\(\sigma \) – naprężenie rozciągające występujące w próbie badanej na zginanie,
\(f_f \) – wytrzymałość doraźna na rozciąganie przy zginaniu przy pojedynczym obciążeniu,
\(\beta \) – nachylenie wykresu trwałości zmęczeniowej materiału wyznaczane około \(10^6 \) cyku obciążenia.

Nachylenie \(\beta \) jest określone po około \(10^6 \) cykliach, z \(\sigma_6 \) i wytrzymałości doraźnej na rozciąganie przy zginaniu przy pojedynczym obciążeniu \(f_f \).

Często prawo zmęczeniowe spotyka się jednak w uproszczonej formie:

\[\sigma_f = A \cdot N^b \]
(3.33)
Dla uproszczenia obliczeń, dla zakresu ruchu od 10^5 do 10^7 cykli (KR2+) stosuje się następujące równanie:

$$\sigma = \sigma_0 \left(\frac{N}{10^6}\right)^b$$ \hspace{1cm} (3.34)

gdzie wartości β i b są powiązane równaniem:

$$b = -0.5\log\left[\frac{1+5\beta}{1+7\beta}\right]$$ \hspace{1cm} (3.35)

Wartość b jest stałą materiałową stabilowaną i podaną dla każdego z materiałów związanych spoiwem hydraulicznym. Wartości "-1/b", podane w tablicach V.4.3 oraz V.4.7 w [4], [5], zawierają się w przedziale od 10 (dla gruntów związanych żużlem lub wapnem pucolanowym) do 16 (dla kruszyw związanych krzemowo-alumihowymi popiołami lotnymi i wapnem).

Wartość β także jest stałą materiałową stabilowaną i podaną dla każdego z materiałów związanych spoiwem hydraulicznym. Wartości "-1/\beta", podane w tablicach V.4.2 oraz V.4.6 w [4], [5], zawierają się w przedziale od 10,4 (dla gruntów związanych żużlem lub wapnem pucolanowym) do 12,8 (dla kruszyw związanych krzemowo-aluhowymi popiołami lotnymi i wapnem).

W przypadku bardzo dużego ruchu całkowitego, przekraczającego 10^7 obciążeń osi 130 kN należy dostosować wartość parametru b dla przedziału od 10^6 do 10^8 cykli, co wyraźać się będzie wzorem:

$$b = -0.5\log\left[\frac{1+6\beta}{1+8\beta}\right]$$ \hspace{1cm} (3.36)

Ostatecznie dla typowych warunków obciążenia ruchem kryterium przyjmuje postać:

$$\sigma_{t,ad} = \sigma_0 \cdot \left(\frac{NE}{10^6}\right)^b \cdot k_r \cdot k_d \cdot k_e \cdot k_s$$ \hspace{1cm} (3.37)

Po odpowiednich przekształceniach do obliczeń otrzymano:

$$NE = 10^6 \cdot \left(\frac{\sigma_i}{\sigma_0 \cdot k_r \cdot k_d \cdot k_e \cdot k_s}\right)^{\frac{1}{b}}$$ \hspace{1cm} (3.38)

Podobnie jak w przypadku kryterium zmęczeniowego dla warstw asfaltowych, także i tutaj wymagane jest podejście iteracyjne ze względu na współczynnik związany z ryzykiem. Współczynnik ten zależy od liczby powtarzalnych obciążeń i musi być dostosowywany do wyników obliczeń.
Różnice pomiędzy kryteriami obecnie stosowanymi w Polsce a kryterium francuskim oraz jego przystosowanie do warunków polskich

Współczynnik dopuszczający efekt nieciągłości w warstwie podbudowy - \(k_d \)

Jako, że stosowane w Polsce materiały związane spojami hydraulicznymi mają relatywnie małe wytrzymałości i sztywności w porównaniu do materiałów stosowanych we Francji, do dalszych obliczeń przyjęto:
- wartość współczynnika \(k_d = 1 \) dla gruntów i kruszyw związanych spojami hydraulicznymi o wytrzymałości mniejszej i równej C5/6, według WT-5 [20]
- oraz \(k_d = 1/1,25 \) (0,8) dla mieszanek związanych spojami hydraulicznymi o wytrzymałości większej i równej C6/8, według WT-5 [20].

Charakterystyka kruszyw i gruntów związanych spojami hydraulicznymi

O ile opis materiałowy mieszanek mineralno-asfaltowych we Francji jest stosunkowo podobny do opisu stosowanego w Polsce, to w przypadku kruszyw i gruntów związanych spojami hydraulicznymi występuje zupełnie inny podejście. W kryteriach stosowanych w Polsce do opisu mieszanek związanej spojami hydraulicznym wymagane są moduł sprężystości Younga \(E \) oraz wytrzymałość na ściskanie po 28 dniach \(R_{c28} \). Dodatkowo na uwagę zasługuje fakt, że stosowane w Polsce materiały związane spojami hydraulicznymi, zarówno według nowych jak i starych przepisów, mają małe moduły oraz wytrzymałości na ściskanie. Klasy wytrzymałości wynoszą od C1/2 do C9/12 według nowych polskich przepisów WT-5 [20]). Według starych przepisów było to \(R_m \) od 1,5 do 5 MPa dla materiałów stabilizowanych spojami hydraulicznym i \(R_m = 6 – 9 \) MPa dla chudych betonów (według polskiego katalogu [1] i starych polskich norm).

W obecnie obowiązujących polskich normach zawarta jest francuska klasyfikacja materiałów związanych spojami hydraulicznymi, jednak nie przyjęła się ona w Polsce do stosowania.

W metodyce francuskiej każdy z materiałów związanych spojami hydraulicznymi opisany jest następującymi parametrami:
- \(E \) – moduł Younga [MPa] określony po 360 dniach dojrzewania materiału,
- \(\sigma_6 \) – naprężenie rozciągające przy którym następuje zniszczenie w teście zginania próbek po 360 dniach dojrzewania, po \(10^6 \) cyklach [MPa],
-\(-1/b \) – nachylenie krzywej zmęczeniowej danego materiału (stała materiałowa – dla wszystkich typowych materiałów związanych spojami hydraulicznymi przyjmuje wartości od 10 do 16),
-\(SN \) – odchylenie standardowe liczby cykli (w skali logarytmicznej) prowadzących do zniszczenia przez zmęczenie materiału (w zależności od mieszanki przyjmuje wartości 0,8 – 1).
Dodatkowo na uwagę zasługuje fakt, że mieszanki związane cementem klasyfikuje się we Francji na podstawie modułu sprężystości oraz wytrzymałości na rozciąganie proste po 360 dniach (R_{360}). Dopiero po zaklasyfikowaniu do jednej z klas przyjmuje się parametry typowe do projektowania. Moduł sztywności E do projektowania przyjmuje się następująco:

- Dla mieszanek kruszyw związanych spojwami hydraulicznymi $E = 0,9 \times E_{360}$
- Dla gruntów związanych spojwami hydraulicznymi $E = 0,75 \times E_{360}$

Te zmniejszone wartości E są przyjmowane w obliczeniach. W ten sposób uwzględnia się mniejsze parametry uzyskiwane na drodze, w stosunku do laboratorium.

Rysunek 3.28 przedstawia sposób klasyfikacji mieszanek kruszyw związanych spojwami hydraulicznymi.

Rysunek 3.28. Klasyfikacja kruszyw stabilizowanych spojwami hydraulicznymi [4], [5].

W metodzie francuskiej podano przeliczniki z wytrzymałości na rozciąganie proste (R_f) po 360 dniach na naprężenie przy zniszczeniu σ_6 po 10^6 cyklach. Przyjęte do przeliczenia współczynniki zależą od rodzaju spojwa oraz materiału szkieletu mineralnego. Pozwala to wyznaczyć parametry materiałowe dla dowolnych materiałów związanych spojwami hydraulicznymi. Wzór ogólny jest następujący:

$$\sigma_6 = a \times \left(\frac{\sigma_6}{R_f}\right) \times R_{360}$$ \hspace{1cm} (3.39)

gdzie:

- a – współczynnik zależny od szkieletu mineralnego:
 - $0,70$ – dla kruszyw
0,75 – dla gruntów

\(\sigma / R_t \) – współczynnik zależny od rodzaju spoiwa:

0,95 – dla mieszanek kruszywa z cementem,
0,96 – dla mieszanek kruszywa z granulowanym żużlem,
0,95 – dla betonów cementowych,
0,85 – dla gruntów związanych żużlem,
0,93 – dla gruntów związanych cementem lub wapnem i popiołami lotnymi
lub popiołami hydraulicznymi lub specjalnymi spoiwami.

\(R_{360} \) – wytrzymałość na rozciąganie proste po 360 dniach.

Jako, że typowe francuskie mieszanki różnią się od typowych mieszanek polskich, do analizy nawierzchni polskich przy użyciu metody francuskiej należy odpowiednio dobrać parametry materiałowe.

Podobnie, jak w przypadku mieszanek mineralno-asfaltowych, do wymiarowania potrzebna jest charakterystyka zmęczeniowa mieszanek związanych spoiwami hydraulicznymi (-1/b oraz SN). O ile SN przyjmuje dwie typowe wartości: 1 dla kruszyw i 0,8 dla gruntów, o tyle nachylenie krzywej zmęczenia jest inne dla każdego typu mieszanki związanej hydraulicznie. Do analiz przyjęto parametry z mieszanek najbardziej zbliżonych do polskich.

Porównanie wyników kryterium Dempsey’a oraz kryterium francuskiego

Na rysunku 3.29 przedstawiono porównanie kryterium francuskiego ze stosowanym dość często w Polsce kryterium Dempsey’a [14]. Jako mieszankę do porównania kryteriów przyjęto podbudowę z kruszywa stabilizowanego cementem o \(R_m = 5 \) MPa, jako często stosowaną w Polsce. Przyjęto następujące założenia dla pierwszej fazy pracy:

- **Parametry kruszywa stabilizowanego cementem \(R_m = 5 \) MPa dla kryterium Dempsey’a**

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moduł sprężystości</td>
<td>(E = 5000) MPa</td>
</tr>
<tr>
<td>Wytrzymałość na ściskanie (f_c)</td>
<td>(3.75) MPa (od 2,5 do 5 MPa po 28 dniach)</td>
</tr>
<tr>
<td>Wytrzymałość na rozciąganie przy zginaniu (f_{flex})</td>
<td>(0,2 \times f_c = 0,75) MPa</td>
</tr>
</tbody>
</table>

- **Parametry kruszywa stabilizowanego cementem \(R_m = 5 \) MPa przyjęte w celu zastosowania francuskiego kryterium projektowania:**

 Moduł sprężystości \(E = 5000 \) MPa

\[
\sigma_6 = a \times \left(\frac{\sigma / R_t}{R_{360}} \right) \times R_{360}
\]

\(a = 0.7 \) (kruszywo związane spoiwem hydraulicznym),
\[\sigma_{6}/R_t = 0,95 \text{ (kruszywo związane cementem)}, \]

Wytrzymałość na rozciąganie po 360 dniach
\[R_{t360} = 0,1 \cdot 1,45 \cdot f_c = 0,1 \cdot 1,45 \cdot 3,75 = 0,544 \text{ MPa} \]
\[\sigma_{6} = 0,7 \cdot 0,95 \cdot 1,45 \cdot 0,1 \cdot 3,75 = 0,362 \text{ MPa} \]

Nachylenie krzywej zmęczeniowej materiału
\[-1/b = 12 \]

Odchylenie standardowe
\[SN = 0,8 \]

Odchylenie standardowe
\[Sh = 3 \text{ cm} \]

Współczynnik materiału
\[k_c = 1,5 \]

- **Obciążenie:**
 - Oś równoważna
 - Obciążenie: 100 kN
 - Ciśnienie kontaktowe
 - 650 kPa

Rysunek 3.29. Porównanie kryteriów zmęczeniowych Dempsey’a i francuskiego dla warstwy podbudowy z kruszywa stabilizowanych cementem \(R_m = 5 \text{ MPa} \) stosowanego w Polsce

W przypadku wyższych naprężeń rozciągających przy zginaniu wywoływanych na spodzie warstwy (0,3 – 0,4 MPa) kryterium francuskie daje wyższe trwałości. Dla niższych naprężeń (0,25 – 0,3 MPa) oba kryteria dają porównywalne wyniki. Z tego wynika, że z kryterium francuskiego należy spodziewać się cieńszych nawierzchni przy takim samym obciążeniu ruchem.
3.5.5. Kryteria dla nawierzchni kompozytowych [4], [5], [17]

Nawierzchnia kompozytowa jest to konstrukcja, w której grubość warstw asfaltowych jest równa lub większa od połowy całej grubości konstrukcji (to znaczy od połowy łącznej grubości warstw asfaltowych i warstw podbudowy zasadniczej związanych spoiwem hydraulicznym). Z tej definicji wynika, że wszystkie polskie nawierzchnie asfaltowe o podbudowach zasadniczych z chudego betonu, albo z kruszywa stabilizowanego cementem Rm = 5 MPa, podane w katalogu [1], należą do tej grupy. W Polsce mówimy o takich nawierzchniach „nawierzchnie półsztywne”. We Francji nazywają się one „chaussees a structure mixte”, czyli „nawierzchnie mieszańskie”. W tłumaczeniu metody francuskiej na język angielski [4] tłumacze użyli określenia „composite pavements”, czyli „nawierzchnie kompozytowe”.

Jest pewne zamieszanie w nazewnictwie. Polskie nawierzchnie półsztywne we Francji miałyby nazwę „mieszane”, albo co lepiej brzmi z angielskiego „kompozytowe”. Nawierzchnie „półsztywne” we Francji mają podbudowy o większej wytrzymałości i stosunkowo cienkie warstwy asfaltowe (cieńsze niż połowa łącznej grubości warstw asfaltowych i podbudowy związanej hydraulicznie).

Dla nawierzchni kompozytowych metoda francuska dopuszcza możliwość pojawienia się spękań odbitych od podbudowy związanej cementem na powierzchni drogi. Aby uwzględnić tę możliwość i zminimalizować ilość spękań odbitych, katalog francuski sugeruje, by nawierzchnia spełniła minimalny warunek na parametr K (stosunek grubości warstw asfaltowych do całkowitej grubości konstrukcji nawierzchni, bez uwzględnienia wzmocnienia podłoża). Odpowiednia grubość warstw asfaltowych pomaga także ograniczyć występowanie uszkodzeń, powstałych w spękaniach podbudowy z kruszyw związanych spoiwem hydraulicznym. Według wytycznych francuskich współczynnik K zależy od modułów mieszanek mineralno-asfaltowych i materiałów związanych spoiwami hydraulicznymi oraz od projektowanego czasu pracy nawierzchni. Dla typowych przypadków i 20 letniego czasu pracy nawierzchni wartość współczynnika K wynosi około 0,5. Jeżeli warunek taki nie jest spełniony, tj. K<0,5 nawierzchnię powinno się projektować jak dla konstrukcji półsztywnej (z podbudową zasadniczą z materiałów związanych spoiwem hydraulicznym o wyższej wytrzymałości) i wymiarować ją dla tylko pierwszej fazy pracy.

Przyjęcie modelu konstrukcji do obliczeń mechanistycznych

Konstrukcja kompozytowa reprezentowana jest przez wielowarstwową półprzestrzeń sprężystą. W pierwszej fазie występującej do zniszczenia warstw podbudowy związanej spoiwami hydraulicznymi zakłada się pełna szczepność pomiędzy wszystkimi warstwami konstrukcji. Za przenoszenie obciążeń

Rysunek 3.30. Model obliczeniowy konstrukcji kompozytowej [4], [5].

Kryteria projektowe

Kryteriami projektowymi konstrukcji kompozytowych są:

- Spękania zmęczeniowe warstwy podbudowy z materiałów związanych spoiwem hydraulicznym,
- Spękania zmęczeniowe warstw asfaltowych,
- Deformacje strukturalne.

Do określenia trwałości zmęczeniowej wyznaczamy następujące parametry:

- Naprężenie poziome \(\sigma_t \) na spodzie warstw związanych spoiwami hydraulicznymi, w I fazie pracy, przed wystąpieniem spękąń zmęczeniowych w tych warstwach,
- Odkształcenie poziome \(\varepsilon_t \) na spodzie warstw asfaltowych w II fazie pracy, po spękaniach zmęczeniowych podbudowy związanej spoiwem hydraulicznym,
- Odkształcenie pionowe \(\varepsilon_z \) na poziomie posadowienia konstrukcji na podłożu gruntowym, wyznaczone w II fazie pracy konstrukcji.

Wartości wyznaczone nie mogą przekroczyć wartości dopuszczalnych określonych z odpowiednich kryteriów zmęczeniowych. Dodatkowo sprawdza się warunek dotyczący współczynnika K, czyli stosunku grubości warstw asfaltowych do całej grubości konstrukcji.

Stosowane prawa zmęczeniowe:

I faza: \(\sigma_{t,\text{std}} = \sigma_t (NE) \cdot k \cdot k' \cdot k'' \) \hspace{1cm} (3.40)
II faza: \(\varepsilon_{t,ad} = \varepsilon(NE,\theta_{eq}, f) \cdot k_r k_c \) \hspace{1cm} (3.41)

Gdzie:

- \(\sigma_{t,ad} \) – dopuszczalne poziome naprężenia rozciągające przy zginaniu, wyznaczane na spodzie warstw z materiałów związanych spoiwami hydraulicznymi,

- \(\sigma_t(NE) \) – naprężenie rozciągające przy zginaniu, przy którym następuje zniszczenie przy zginaniu próbki 360 dniowej z materiałów związanych spoiwami hydraulicznymi po NE obciążeniach,

- \(\varepsilon_{t,ad} \) – dopuszczalne poziome „odkształcenie pracy” warstwy, określone na spodzie warstw asfaltowych,

- \(\varepsilon(NE,\theta_{eq}, f) \) – typowe odkształcenie, dla którego z 50% prawdopodobieństwem następuje zniszczenie zginanej próbki mieszanki mineralno - asfaltowej, otrzymane po NE cyklach obciążenia, w temperaturze ekwiwalentnej, przy częstotliwości charakterystycznej, dla odkształceń występujących w rozważanej warstwie,

- \(k_r \) – współczynnik ryzyka,

- \(k_c \) – współczynnik materiału,

- \(k_s \) – współczynnik podłoża.

Wzory stosowane do obliczeń nawierzchni kompozytowych różnią się nieznacznie od wzorów dla konstrukcji z jedną fazą pracy.

W przypadku pierwszej fazy pracy nawierzchni kompozytowej nie występuje współczynnik \(k_d \), odpowiedzialny za możliwość redukcji dopuszczalnych naprężeń w warstwie związanej spoiwem hydraulicznym ze względu na nieciągłości w podbudowie. Redukcja w przypadku kryterium jednofazowego następowała, gdy w podbudowie występowaly kruszywa związane spoiwem klasy G4 lub G5 albo zagęszczony beton.

W przypadku drugiej fazy pracy nawierzchni kompozytowej nie występuje redukcja odkształceń dopuszczalnych w warstwie asfaltowej ze względu na współczynnik podłoża pod warstwą konstrukcyjną. Posadowienie na warstwie związanej cementem automatycznie powoduje przyjęcie wartości \(k_s = 1 \).

Dodatkowo należy zwrócić uwagę na współczynnik ryzyka oraz ruch używany do obliczeń. Dla każdej z rozpatrywanych warstw wyznaczamy oddzielnie ryzyko jej zniszczenia. Można tego dokonać na podstawie tablicy z typowymi wartościami (podanymi na początku opracowania) lub przyjąć poziom ryzyka samemu. Ze względu na dopuszczenie w nawierzchniach kompozytowych pojawienia się spękań w podbudowie związanej spoiwem w czasie trwania okresu eksploatacji, przyjmowane jest większe ryzyko niż w przypadku nawierzchni półsztywnej, wymiarowane dla jednej fazy pracy dla takiego samego ruchu.
Natomiast w przypadku obciążenia ruchem należy pamiętać o przyjęciu odpowiedniego współczynnika średniej agresywności CAM. W przypadku warstw asfaltowych wynosi on CAM = 0,8. Dla warstw związkanych spoiwem hydraulicznym współczynnik przyjmuje wartość CAM = 1,3. Współczynniki te uwzględniają już sposób przeliczania osi rzeczywistych na osie standardowe w zależności od typu analizowanej konstrukcji (czy jest to konstrukcja podatna czy też półsztywna lub kompozytowa). Powoduje to, że dla każdej z warstw inna jest wartość osi równoważnych przyjmowanych do wymiarowania. W przypadku nawierzchni kompozytowej w fazie I przyjmuje się większy ruch obliczeniowy, a w fazie II mniejszy.

Aby wyznaczyć grubość nawierzchni kompozytowej dla danego ruchu tworzymy dwa przecinające się wykresy, korzystając z wcześniej przedstawionych założeń oraz praw zmęczeniowych. Pierwszy z wykresów tworzony jest na podstawie obliczeń mechanistycznych dla wybranej konstrukcji nawierzchni. Drugi natomiast jest tworzony na podstawie wartości dopuszczalnych. Poniższa procedura wymiarowania, będzie przedstawiona dla następujących materiałów:

Mieszanki mineralno asfaltowe:
Moduł sprężystości w temperaturze ekwiwalentnej θ
MPa
E(θ=12°C) = 10000
Moduł sprężystości w temperaturze 10°C
MPa
E(10°C) = 12300
Współczynnik Poisson’a
ν = 0,35
Odkształcenie przy zniszczeniu po 10⁶ cyklach
εₚ = 90 μstrain
Nachylenie krzywej zmęczeniowej materiały
-1/b = 5
Odchylenie standardowe
SN = 0,3
Odchylenie standardowe
Sh = zależne od grubości nawierzchni bitumicznej
Współczynnik materiału
kₖ = 1,3 (Podbudowa)
Współczynnik agresywności ruchu
CAM = 0,8
Kruszywo związane cementem:
Moduł sprężystości I faza
E = 5000 MPa
Moduł sprężystości II faza
E = 1000 MPa
Współczynnik Poisson’a I faza
ν = 0,25
Współczynnik Poisson’a II faza
ν = 0,3
Naprężenie przy zniszczeniu po 10⁶ cyklach
σₚ = 0,356 MPa
Nachylenie krzywej zmęczeniowej materiały
-1/b = 12
Odchylenie standardowe
SN = 0,8

142
Odchylenie standardowe $Sh = 3$ cm
Współczynnik materiału $k_c = 1,5$
Współczynnik agresywności ruchu $CAM = 1,3$

Ruch obliczeniowy:

Kategoria ruchu $KR 5$
Ilość osi równoważnych $14\,600\,000$ osi 100 kN
Oś równoważna 100 kN
Ciśnienie kontaktowe 650 kPa

Rysunek 3.31. Wyniki obliczeń konstrukcji kompozytowej dla przypadku podbudowy związanej cementem $R_m = 5$ MPa o grubości 20 cm i zmiennej grubości warstw asfaltowych, dla ruchu obliczeniowego $14,6$ mln osi równoważnych 100 KN

Przedstawiony powyżej wykres przedstawia typowe wyniki obliczeń konstrukcji kompozytowych. Na rysunku przedstawione są dwie krzywe. Pierwsza z nich (czarna) stworzona została na podstawie obliczeń mechanistycznych w następujący sposób: Punktem utworzonym w pierwszej kolejności jest punkt oznaczony „A” na rys. 3.31. Odpowiada on następującej konstrukcji – 12 cm warstwy betonu asfaltowego oraz 20 cm warstwy związanej spoiwem hydraulicznym. W punkcie A o współrzędnych (x,y) mamy:
Wartość „x” - na osi odciętych jest równa ε_{t}, czyli odkształceniu na spodzie warstw asfaltowych wyznaczonemu dla drugiej fazy pracy konstrukcji nawierzchni, gdy podbudowa związana cementem jest spękana.

Wartość „y” na osi rzędnych jest równa σ_{t} czyli naprężeniom rozciągającemu przy zginaniu, wyznaczonemu dla pierwszej fazy pracy konstrukcji nawierzchni na spodzie warstwy niespękanej podbudowy związanej spojem hydraulicznym.

Dla drugiej fazy pracy przy obliczaniu ε_{t} przyjęto do obliczeń brak szczepności pomiędzy warstwami asfaltowymi, a popękany warstwami związanymi spojem hydraulicznym oraz zmniejszono pięciokrotnie początkowy moduł warstw związanych cementem. Przyjęto pełną szczepność pomiędzy wszystkimi warstwami asfaltowymi.

Obliczenia wykonano dla wielu kombinacji grubości poszczególnych warstw, od konstrukcji 12 cm warstw asfaltowych, 20 cm warstw związanych cementem do konstrukcji: 30 cm warstw asfaltowych, 20 cm warstw związanych cementem. Nie uwzględniono w obliczeniach (w sposób celowy) założeń dla współczynnika K, które nakazują wymiarować konstrukcję dla jednej fazy pracy gdy $K<0,5$.

Obliczenia te pozwoliły nam uzyskać zestaw następujących punktów:

$$ (x, y) = [\varepsilon_{t}(II faza pracy), \sigma_{t}(I faza pracy)] $$

Druga krzywa, widoczna na rysunku jako linia czerwona, utworzona jest dla zakładanej trwałości zmęczeniowej, którą ma zapewnić projektowana nawierzchnia. Jest to związek określony dla obliczeniowej liczby osi równoważnych 100 kN równej 14,6 mln (górna granica ruchu KR5 według polskiego katalogu). Wykres czerwony przedstawia związek dwóch zmiennych (x,y), gdzie:

- Wartość „x” - na osi odciętych jest równa $\varepsilon_{t,ad}$, czyli dopuszczalnemu odkształceniu na spodzie warstw asfaltowych wyznaczonemu dla drugiej fazy pracy konstrukcji nawierzchni, gdy podbudowa związana cementem jest spękana, dla przyjętego ruchu obliczeniowego,

- Wartość „y” na osi rzędnych jest równa $\sigma_{t,ad}$ czyli dopuszczalnemu naprężeniom rozciągającemu przy zginaniu na spodzie warstwy niespękanej podbudowy związanej spojem hydraulicznym, wyznaczonemu dla pierwszej fazy pracy konstrukcji nawierzchni

Wykres jest wyłącznie teoretyczny i nie jest powiązany z konkretną konstrukcją. Tworzone są hipotetyczne pary zmiennych: $x = \varepsilon_{t,ad}$ (odkształcenie rozciągające w warstwach asfaltowych w II fazie pracy) i $y = \sigma_{t,ad}$ (naprężenie rozciągające przy zginaniu w warstwach związanych spojem hydraulicznym w I fazie pracy), które
możą występować w różnych rozważanych wariantach konstrukcji kompozytywnych.

Punkt oznaczony „1” na rysunku 3.31 to punkt, w którym wartość na osi odciętych „x” stanowi odkształcenia rozciągające ε_{t,ad} na spodzie warstw asfaltowych. Odkształcenie to dobrano w taki sposób, aby dominująca część założonej trwałości zapewniona była przez drugą fazę pracy. Założenie to wynika z przyjmowania całkowitych wartości odkształceń rozciągających. Trwałość w II fazie pracy, odpowiadająca odkształceniu ε_{t,ad} wynosi N₂. Znając całkowitą ilość pojazdów ciężarowych jaką ma przenieść nawierzchnia N oraz trwałość w fazie II równą N₂ obliczono jaką trwałość powinna zapewnić warstwa związana spoiwem hydraulicznym w I fazie pracy według następującego wzoru:

\[NE_{I	ext{ faza}} = 1,3 \cdot (N - N^2) \]
\[N^2 = \frac{NE_{II	ext{ faza}}}{0,8} \]

Współczynniki liczbowe (1,3 i 0,8) występujące we wzorach wynikają z przeliczania ciężarowego ruchu rzeczywistego N na ilość osi równoważnych 130 kN NE, przy pomocy współczynników średniej agresywności CAM. Dla materiałów związanych spoiwami hydraulicznymi, współczynnik CAM przyjmuje wartość 1,3. Dla materiałów asfaltowych współczynnik CAM przyjmuje wartość 0,8. W przypadku osi równoważnych 100 kN współczynniki CAM powinny przyjmować wartości wyznaczone na podstawie rzeczywistych pomiarów ruchu dla danego obciążenia drogi. Z braku odpowiednich danych oraz dla uproszczenia obliczeń, przyjęto wartości współczynników CAM wyznaczone dla osi 130kN.

Ostatecznym etapem jest wyznaczenie dopuszczalnego naprężenia rozciągającego przy zginaniu σ_{t,ad} dla warstw związanych cementem, które
zapewnią obliczoną trwałość NE I faza. Wartość $\sigma_{t,ad}$ stanowić będzie rzędna „y” na wykresie (rys. 3.31) przy $x = \varepsilon_{t,ad}$

Kolejny punkt (2) wyznaczany jest następująco. Do wybranych w punkcie (1) odkształceń $\varepsilon_{t,ad}$ dla drugiej fazy pracy dodajemy stałą wartość. W przykładzie zwiększono odkształcenia o 5×10^{-6} (5 mikrostrainów). Analogicznie wyznaczano trwałość, którą musi zapewnić nam pierwsza faza pracy oraz wyznaczano dopuszczalne naprężenia $\sigma_{t,ad}$. Ostatecznie ze wszystkich obliczonych par punktów utworzony jest wykres pokazany jako czerwona krzywa na rys. 3.31:

$$(x, y) = [\varepsilon_{t,ad} (II faza pracy, NE_{II faza}), \sigma_{t,ad} (I faza pracy, NE_{I faza})]$$

(3.45)

Na rysunku 3.32 przedstawiono szczegółowo sposób dobierania prawidłowej grubości konstrukcji.

Rysunek 3.32. Szczegół dobierania grubości nawierzchni dla konstrukcji kompozytowej dla ruchu obliczeniowego KR1

Czerwona linia pokazuje pary punktów ($\varepsilon_{t,ad,1}, \sigma_{t,ad,1}$) wyznaczone dla zadanego ruchu obliczeniowego NE. Ruch ten wynosi 90000 osi równoważnych 100 kN. Zielona linia pokazuje pary punktów dla zaprojektowanych konstrukcji ($\varepsilon_{t,11}, \sigma_{t,11}$). Przedstawia odkształcenia na spodzie warstw asfaltowych $\varepsilon_{t,11}$ w drugiej fazie pracy oraz naprężenia na spodzie warstw stabilizowanych spoiwem hydraulicznym $\sigma_{t,11}$ w pierwszej fazie pracy. Punkt ($\varepsilon_{t,11,1}, \sigma_{t,11,1}$) odpowiada konstrukcji „n1” cm warstw asfaltowych, 20 cm gruntu związanego cementem. Punkt ($\varepsilon_{t,12,1}, \sigma_{t,12,1}$)
pokazuje te same parametry dla konstrukcji „n+1” cm warstw asfaltowych, 20 cm kruszywa związanego cementem. Grubość warstw asfaltowych zmieniano co 1 cm, poczynając od 5 cm aż do 33 cm

Punkt \((\varepsilon_{t,1}, \sigma_{t,1})\) reprezentuje niedowymiarowaną konstrukcję dla zadane kiego ruchu NE. Wynika to z większych odkształceń w drugiej fazie pracy oraz większych naprężeń w pierwszej fazie pracy. Konstrukcja przenosząca dokładnie zadany ruch występuje na przecięciu się dwóch stworzonych linii. Występują wtedy odpowiednie naprężenia w warstwie związanej hydraulicznie w pierwszej fazie pracy oraz odpowiednie odkształcenia w warstwie bitumicznej w drugiej fazie pracy.

W praktyce jednak, jako projektowaną konstrukcję przyjmuje się tą przedstawioną parą punktów \((\varepsilon_{t,2}, \sigma_{t,2})\), gdyż jest to pierwsza konstrukcja która spełnia zadane parametry. Dodatkowo dla każdej z dwóch faz musi być sprawdzony warunek na dopuszczalne odkształcenia pionowe w gruncie oraz warunek nośności podłoża gruntowego po zsumowaniu obu faz przy pomocy kryterium Minera.

Innym rozwiązaniem jest stworzenie krzywej z kolejnego zestawu par punktów \((\varepsilon_{t}, \sigma_{t})\) dla innego typu konstrukcji (np. z większą lub mniejszą grubością warstwy stabilizowanej społem hydraulicznym). Przykład takiego rozwiązania przedstawia rysunek 3.33.

Rysunek 3.33. Dobór konstrukcji nawierzchni dla zadane kiego ruchu KR6
Na rysunku 38 przedstawiono cztery możliwe typy konstrukcji, które mogą przenieść zadany ruch KR6. Są to konstrukcje z 15, 20 i 25 cm warstwą kruszywa związanego cementem oraz konstrukcja spełniająca warunek K ≥ 0,5. Każdy z zaznaczonych punktów jest prawidłowo dobraną konstrukcją przenoszącą ruch projektowany zadanym jednakowym ryzykiem zniszczenia konstrukcji. Są to następujące konstrukcje:

- h\textsubscript{bit} = 29 cm, h\textsubscript{stab} = 15 cm;
- h\textsubscript{bit} = 25 cm, h\textsubscript{stab} = 20 cm;
- h\textsubscript{bit} = 23 cm, h\textsubscript{stab} = 23 cm;
- h\textsubscript{bit} = 21 cm, h\textsubscript{stab} = 25 cm;

Konstrukcja Nr 4 nie spełnia formalnego warunku K≥0,5 i nie może być zaliczona do konstrukcji kompozytowych.

Mając konkretne grubości warstw spełniających kryteria projektowe, przy identycznym ryzyku zniszczenia, oraz koszty budowy warstw asfaltowych i związanych hydraulicznie można zająć się analizą ekonomiczną i wyborem konstrukcji nawierzchni o najniższym koszcie budowy. W analizowanym przypadku, uwzględniając ceny na polskim rynku budowlanym, gdzie warstwy bitumiczne są znacznie droższe od stabilizacji cementem najtańszą konstrukcją spełniającą warunek K≥0,5 byłaby konstrukcja Nr 3.

Obecnie w Polsce do obliczeń nawierzchni półsztywnych korzysta się z kryterium Minera dla dwóch kryteriów zmęczeniowych – Instytutu Asfaltowego (dla konstrukcji podatnych) oraz Dempsey’a (dla konstrukcji związanych spoiwami hydraulicznymi). Kryterium francuskie nie uwzględnia bezpośrednio szkody zmęczeniowej warstw asfaltowych nawierzchni w pierwszej fazie pracy, uznając, że w pierwszej fazie szkoda ta jest pomijalnie mała. Zgodzić się wypada z takim podejściem, ponieważ wiadomo, że szkoda zmęczeniowa warstw asfaltowych w I fazie pracy wynosi zwykle kilka procent całkowitej trwałości zmęczeniowej. Najprawdopodobniej ta drobna różnica ukryta jest we współczynnikach ryzyka zniszczenia warstw. Dodatkowo w dotychczas stosowanej w Polsce metodzie obliczeń, w drugiej fazie pracy zakładano pełną szczepność pomiędzy popękanymi warstwami związanymi spoiwem hydraulicznym oraz warstwami asfaltowymi oraz fakt, że warstwa związana pracuje w stanie całkowitego zniszczenia (przyjmowanie modułu E jak dla kruszywa łamanego). We Francji zakłada się brak szczepności pomiędzy warstwą asfaltową i spękaną podbudową związaną hydraulicznie i przyjmuje się, że po spękaniu podbudowa związana hydraulicznie ma moduł równy 1/5 modułu początkowego, co odpowiada spękaniu tej podbudowy w duże bloki. Dodatkowym utrudnieniem w stosowaniu metody francuskiej jest fakt uwzględnienia zmiennosci ryzyka dla warstw asfaltowych cieńszych od 15 cm.
3.6. Podsumowanie

Przedstawione kryteria zmęczeniowe są wynikiem trzydziestoletnich doświadczeń inżynierów francuskich w zakresie projektowania konstrukcji nawierzchni. Przyjęte przez nich założenia dotyczące zarówno ryzyka zniszczenia nawierzchni, jak i opisu materiałów, znacząco się różnią od obecnie wykorzystywanych w Polsce. Wstępne obliczenia, przy zastosowaniu przedstawionej metody francuskiej i przyjęciu odpowiednich założeń, dają wyniki różniące się w pewnym stopniu od obecnie stosowanych w Polsce kryteriów zmęczeniowych Instytutu Asfaltowego i Dempeya. Otrzymane grubości warstw są jednak porównywalne z występującymi w katalogu polskim, dla odpowiednio założonych tradwości zmęczeniowych. Przy odpowiednio przyjętych założeniach materiałowych, francuskie kryteria zmęczeniowe mogą stanowić dobre narzędzie do projektowania konstrukcji nawierzchni.

Sposób analizy konstrukcji według metody francuskiej pozwala na dobranie prawidłowej konstrukcji dla zadanego ruchu, tak by jak najlepiej rozłożyć ruch na poszczególne fazy pracy. Wymaga to jednak dość dużej ilości skomplikowanych obliczeń, aby dobrać odpowiednie grubości warstw konstrukcji. Ogólnie biorąc opis metody francuskiej jest skomplikowany i trudny do zrozumienia. Jednakże po bliższym poznaniu metoda francuska pozwala na wnikliwą analizę konstrukcji.

3.7. Literatura

[22] Catalogue des Structures Types de Chausses Neuves, DRCR, SETRA, LCPC, circulaire 77-1156 du 5 Décembre, 1977

4. PORÓWNANIE KATALOGÓW TYPOWYCH NAWIERZCHNI
PODATNYCH I PÓŁSZTYWNYCH AUSTRII, FRANCJI,
NIEMIEC, POLSKI I METODY WIELKIEJ BRYTANII

Opracował: Prof. dr hab. inż. Józef Judycki

4.1. Wprowadzenie

W niniejszym opracowaniu przedstawiono porównanie katalogowych nawierzchni asfaltowych (podatnych i półsztywnych) Polski z 1997 r. [1], Francji z 1998 r. [2], Niemiec z 2001 r. [3] i Austrii z 2008 r. [4]. Do porównania dodano nawierzchnie zaprojektowane według metody Wielkiej Brytanii z 2006 r. [5]. Z wielu konstrukcji nawierzchni przedstawionych w katalogach do porównania szczegółowego wybrano cztery typy nawierzchni odpowiadające najczęściej stosowanym w Polsce. Były to nawierzchnie na podbudowach zasadniczych:

a) z kruszywa łamanego stabilizowanego mechanicznie,
b) z betonu asfaltowego ułożonego wprost na wzmocnionym podłożu,
c) z chudego betonu lub podobnych materiałów,
d) ze stabilizacji cementem lub innym spoiwem hydraulicznym.

Na początku opracowania podano podstawowe dane o poszczególnych katalogach zagranicznych.

Opracowanie to powstało w czasie prac nad aktualizacją i weryfikacją polskiego katalogu z 1997 r., jakie na zlecenie GDDKiA prowadzi Politechnika Gdańska. Wyniki tego porównania będą uwzględnione przy weryfikacji katalogu polskiego.

4.2. Dane ogólne o katalogach

Katalogi [1,2,3,4] różnią się istotnie miedzy sobą formą, objętością oraz rodzajami i grubościami warstw konstrukcji. Poniżej omówiono tylko katalogi zagraniczne. Metody brytyjskiej nie opisywano szczegółowo, ponieważ nie ma ona formy katalogu typowych nawierzchni.

4.2.1. Katalog austriacki [4]

Katalog austriacki [4] z 2008 r. jest najprostszy i najmniejszy objętościowo, liczy razem 18 stron. Zawiera 3 typy nawierzchni asfaltowych podatnych, 1 typ nawierzchni półsztywnych, 2 typy nawierzchni betonowych i 6 typów nawierzchni z kostki brukowej i płyt. Okres projektowy wynosi 20 lat. Ciężar standardowej osi równoważnej jest równy 100 kN. Ruch dzieli się na 7 kategorii, według całkowitej
liczby osi standardowych 100 kN w okresie 20 lat eksploatacji. Najwyższa kategoria ruchu „S” jest od 10 do 25 mln osi 100 kN. Najniższa to ruch kategorii VI, poniżej 0,05 mln osi 100 kN. Przy ruchu większym od 25 mln osi 100 kN zaleca się projektowanie indywidualne.

Dolne warstwy podbudowy („untere Tragschichten”) w nawierzchniach podatnych i półsztywnych wykonane są w każdym przypadku z kruszywa naturalnego niezwiązanego spojem. Możliwe jest stosowanie mieszanek kruszyw naturalnego i granulatu asfaltowego. Udział granulatu asfaltowego nie może przekraczać 50%.

Na dolnej warstwie podbudowy spoczywa góra warstwa podbudowy („obere Tragschicht”). Są cztery typy górnych warstw podbudowy:

- **Typ 1** – Są dwa podtypy w tej grupie. Podtyp (a) podbudowy z kruszywa nie związanego spojem C\textsubscript{NR} o przeważającej zawartości wyokrąglonych ziaren (mieszanki kruszyw naturalnych i łamanych) i o module pierwotnym na poziomie warstwy E\textsubscript{v1} ≥75 MPa, lub podtyp (b) z kruszyw łamanych C\textsubscript{50/30} i C\textsubscript{90/3} o module pierwotnym na poziomie warstwy E\textsubscript{v1} ≥90 MPa,
- **Typ 2** – podbudowa niezwiązana z kruszyw łamanych ostrokrawędziastych mieszanych w wytwórni C\textsubscript{90/3} o module pierwotnym na poziomie warstwy E\textsubscript{v1} ≥90 MPa,
- **Typ 3** – podbudowa typu RA, niezwiązana ze sfrezowanego lub pokruszonego granulatu asfaltowego z recyklingu, tylko dla niższych klas ruchu poniżej 1,3 mln osi 100 kN (od klas III do VI),
- **Typ 4** – podbudowa stabilizowana cementem lub innym spojem hydraulicznym o niskiej początkowej i wysokiej końcowej wytrzymałości.

4.2.2. Katalog niemiecki [3]

przedstawiające metodę obliczania ruchu (7 stron) i rozbudowane przykłady zastosowania (26 stron). Katalog niemiecki zawiera 6 typów nawierzchni asfaltowych podatnych i jeden typ nawierzchni półsztywnych, 6 typów nawierzchni betonowych i 7 typów nawierzchni z kostki brukowej. Okres obliczeniowy wynosi 30 lat. Standardowa oś równoważna jest równa 100 kN. Nawierzchnie dzielą się na 7 klas budowlanych („Bauklasse”). Podstawą podziału jest ruch całkowity w okresie 30 lat eksploatacji wyrażony w osiach standardowych 100 kN, z największym ruchem w klasie „SV” - ponad 32 mln osi 100 kN i najmniejszym w klasie VI - poniżej 0,1 mln osi 100 kN. Podano dwie metody obliczania obciążenia nawierzchni ruchem, wyrażonego liczbą osi standardowych 100 kN w okresie 30 lat eksploatacji nawierzchni:

- metoda 1 – obciążenie ruchem wyznaczane jest na podstawie średniiodobowego natężenia ruchu ciężkiego (pojazdy o masie całkowitej co najmniej 3,5 ton),
- metoda 2 – obciążenie ruchem wyznaczane jest na podstawie danych o obciążeniu osi poszczególnych pojazdów, do zastosowania tej metody potrzebne są dane z ważenia pojazdów.

W katalogu zakłada się, że wtórny moduł odkształcenia podłoża gruntowego pod warstwą mrozoochronną musi być większy od \(E_{v2} \geq 45 \text{ MPa} \). Jeżeli jest mniejszy to podłoże naturalne pod warstwą mrozoochronną powinno być dodatkowo wzmocnione.

Na podłożu gruntowym \(E_{v2} \geq 45 \text{ MPa} \) ułożona jest warstwa mrozoochronna. Wytyczne ZTV T-StB 95 przewidują następujące materiały na warstwę mrozoochronną:

- Żwiry i mieszanki żwirowo piaskowe grup GE, GI oraz GW zgodnie z DIN 18196,
- Piaski i mieszanki piaskowo-żwirowe z grup SE, SI oraz SW według DIN 18196,
- Mieszanki grysu i piasku łamanego o uziarnieniu 0/5 do 0/32, jak również mieszanki z kruszywa łamanego, grysu oraz piasku łamanego o uziarnieniu 0/45 oraz 0/56. Udział najgrubszych klas ziaren włącznie z nadziarem w mieszanice mineralnej musi wynosić minimum 10% masy.

W warstwie mrozoochronnej dopuszczalny udział ziaren poniżej 0,063 mm jest nie większy niż 7%, ze względu na zachowanie wodoprzepuszczalności tej warstwy. W górnej części obejmującej 20 cm warstwy mrozoochronnej udział ziaren kruszywa ponad 2 mm musi wynosić 30% masy. Jak widać wymagania dla warstwy mrozoochronnej pod względem uziarnienia są wysokie. Jest to w pełni uzasadnione. Dotychczasowe wymagania względem warstw mrozoochronnych w Polsce są znacznie niższe niż w Niemczech, co zdaniem autora nie jest prawidłowe.
Grubość warstwy mrozoochronnej w Niemczech wynika z „minimalnej grubości mrozoochronnej konstrukcji nawierzchni”, a ta zależy z kolei od trzech czynników głównych: klasy wysadzinowości gruntu podłoża (F1, F2 i F3), położenia drogi w strefie mrozowej (I, II i II), klasy budowlanej nawierzchni (od SV do VI) oraz od czterech czynników dodatkowych (położenia niewelety, położenia trasy drogi, stosunków wodnych i wykonania stref bocznych, np. poboczy, chodników, ścieków itp.).

Dla nawierzchni o podbudowach zasadniczych: asfaltowych (typ 1), związanych hydraulicznie (typ 2.1), z kruszyw (typ 3) i z kruszyw naturalnych (typ 4) przyjęto minimalny wtórny moduł odkształcenia na poziomie warstwy mrozoochronnej co najmniej \(E_2 \geq 100 \text{ MPa} \) dla lekkiego ruchu (klasy V i VI) i \(E_2 \geq 120 \) dla cięższego ruchu od klasy IV do SV. Dla pozostałych typów podbudów zasadniczych (2.2, 2.3, i 5) wymagania co do wtórnego modułu odkształcenia na poziomie warstwy mrozoochronnej określono w sposób bardziej złożony.

W katalogu niemieckim jest 5 typów podbudów zasadniczych:

- **Typ 1** – asfaltowa warstwa nośna („Asphalttragschicht”) ułożona wprost na warstwie mrozoochronnej,
- **Typ 2** – dzieli się na 3 podtypy:
 - **Podtyp 2.1** – podbudowa zasadnicza dwuwarstwowa: asfaltowa warstwa nośna i warstwa nośna związana hydraulicznie („Hydraulisch gebundene Tragschicht”) na warstwie mrozoochronnej,
 - **Podtyp 2.2** - asfaltowa warstwa nośna ułożona na warstwie z materiału niepodatnego na mróz, o szerokich granicach uziarnienia, zgodnie z DIN 18196,
 - **Podtyp 2.3** - asfaltowa warstwa nośna ułożona na warstwie z materiału niepodatnego na mróz, o wąskich granicach uziarnienia, zgodnie z DIN 18196,
- **Typ 3** – podbudowa zasadnicza dwuwarstwowa: asfaltowa warstwa nośna i warstwa nośna z kruszywa łamanego („Schottertragschicht”) na warstwie mrozoochronnej,
- **Typ 4** - podbudowa zasadnicza dwuwarstwowa: asfaltowa warstwa nośna i żwirowa warstwa nośna („Kiestragschicht”) na warstwie mrozoochronnej,
- **Typ 5** - podbudowa zasadnicza dwuwarstwowa: asfaltowa warstwa nośna i warstwa nośna z kruszywa łamanego lub ze żwiru ułożona na warstwie z materiału niepodatnego na mróz o wąskich granicach uziarnienia, zgodnie z DIN 18196.

Warstwy asfaltowe w katalogu niemieckim mają większe grubości niż w austriackim. W najwyższej klasie obciążenia ruchem SV grubości te wynoszą 30 cm dla wszystkich typów podbudów z wyjątkiem typu 2.1 - podbudowy związanej
hydraulicznie, gdzie warstwy asfaltowe są cieńsze i wynoszą maksymalnie 26 cm.

4.2.3. Katalog francuski [2]

Drogi we Francji dzielą się na sieć strukturalną (VRS) większego znaczenia transportowego i sieć niestrukturalną (VRNS) mniejszego znaczenia. Katalog francuski [2] z 1998 r. jest najbardziej rozbudowany i skomplikowany ze wszystkich rozpatrywanych. Liczy 52 karty, które przedstawiają nawierzchnie różnych typów, w tym 27 kart z nawierzchniami dla sieci niestrukturalnej dróg (VRNS) projektowanymi na 20-letni okres eksploatacji i 25 kart z nawierzchniami dla sieci strukturalnej dróg (VRS) projektowanymi na 30-letni okres eksploatacji. Każda karta zawiera dane dla pojedynczego typu nawierzchni przedstawione na 4 stronach formatu A4. Oprócz 52 kart katalog zawiera 3 broszurki, zatytułowane: (1) „Instrukcja użytkowania” – 22 strony, (2) „Hipotezy i dane obliczeniowe” – 20 stron oraz (3) „Aneksy” – 48 stron. Krótkie omówienie katalogu francuskiego jest bardzo trudnym zadaniem, ze względu na jego dużą objętość i duży stopień skomplikowania. Opis zasad projektowania we Francji zawierają ponadto dwie publikacje książkowe [6,7], które pozwalają na pełniejsze zrozumienie katalogu.

W części dla sieci niestrukturalnej dróg (VRNS), dla 20 letniego okresu eksploatacji podano:
- 6 typów nawierzchni podatnych, w tym jeden typ o podbudowie z betonu asfaltowego o wysokim module sztywności,
- 4 typy nawierzchni kompozytowych,
- 11 typów nawierzchni z podbudowami związanymi spojwami hydraulicznymi, zwane nawierzchniami półsztywnymi,
- 5 typów nawierzchni betonowych niezbrojonych,
- 1 typ nawierzchni betonowych ciągle zbrojonych.

Podobna ilość typów występuje dla sieci dróg strukturalnych VRS.

Nazewnictwo francuskie jest inne niż polskie w odniesieniu do nawierzchni o podbudowach związanych spojwami hydraulicznymi. W Polsce wszystkie takie nawierzchnie nazywają się „półsztywnymi”. We Francji nawierzchnie o podbudowach związanych spojwami hydraulicznymi dzielą się na dwie grupy:
- „Nawierzchnie kompozytowe” o podbudowach zasadniczych dwuwarstwowych: górnej - asfaltowej i dolnej - związanej spojwami hydraulicznym. W dosłownym tłumaczeniu z języka francuskiego są to „nawierzchnie mieszané” = „les chaussées à structure mixte”. Nazwa „mieszane” bierze się stąd, że góra warstwa podbudowy zasadniczej jest asfaltowa, a dolna związana spojwem hydraulicznym. Stosowana w niniejszym opracowaniu nazwa „kompozytowe” pochodzi od angielskiej
nazwy tych nawierzchni - „composite pavements”. W tych nawierzchniach przyjęto zasadę przy projektowaniu, że warstwy asfaltowe mają znaczną grubość, od 10 do 20 cm, i stanowią nie mniej niż 50% sumy grubości sumarycznej warstw asfaltowych i warstwy podbudowy związanej spoiami hydraulicznymi.

• „Nawierzchnie z podbudową związaną spoiami hydraulicznymi”, zwane w skrócie „nawierzchniami półsztywnymi” (w jęz. francuskim „chaussées à assise traitée aux liants hydrauliques” lub w skrócie „semi – rigide”) są to nawierzchnie o jednej albo dwóch warstwach podbudowy zasadniczej związanych spoiami hydraulicznymi. Tylko warstwy górne („couche de surface”) są asfaltowe. Warstwy asfaltowe tych nawierzchni mają małą grubość od 6 cm do 16 cm.

Ruch podzielony jest na 8 klas, od najmniejszego ruchu TC1 do najcięższego TC8. W katalogu [2] podano konstrukcje typowe dla klas ruchu od TC2 do TC8, nie podano natomiast nawierzchni dla ruchu bardzo lekkiego TC1. Do projektowania uwzględnia się tylko ciężkie pojazdy. Jako „pojazd ciężki = Poids Lourds”, w skrócie „PL” definiuje się obecnie pojazd o masie całkowitej równej co najmniej 3,5 tony, według normy FN P98-082 Aneks D. Poprzednio we Francji jako pojazdy ciężkie PE klasyfikowano pojazdy o masie całkowitej co najmniej 5 ton [6,7]. Podstawą klasyfikacji ruchu jest pojazdów ciężkich jest średnioroczny ruch dobowy w pierwszym roku eksploatacji nawierzchni, wyrażany w liczbie pojazdów ciężkich (PL). Ruch sumaryczny w całym okresie eksploatacji oblicza się z uwzględnieniem procentowego coroczne wzrostu ruchu.

We Francji osią standardową jest oś pojedyncza 130 kN z kołami podwójnymi. Jest to maksymalne legalne obciążenie osi we Francji. W kartach konstrukcji katalogowych podano sumaryczną liczbę pojazdów ciężkich w okresie eksploatacji, wyrażoną w mln pojazdów ciężkich PL. Oprócz tego dla każdej klasy ruchu podano sumaryczną liczbę osi standardowych 130 kN w okresie eksploatacji, oznaczonych w skrócie NE.

Największy ruch sumaryczny w klasie TC8 dla dróg sieci strukturalnej VRS w okresie 30 lat wynosi 94 mln pojazdów ciężkich PL, a najmniejszy w klasie TC1 wynosi 0,1 mln PL.

Komplikacją w klasyfikacji ruchu we Francji jest fakt, że w danej klasie ruchu występuje zawsze taka sama liczba pojazdów ciężkich PL, ale może być inna liczba osi standardowych 130 kN (NE) w zależności od dwóch czynników: typu nawierzchni i znaczenia drogi jako elementu sieci strukturalnej VRS lub niestrukturalnej VRNS. Na przykład w sieci niestrukturalnej, w klasie ruchu TC6_20 liczba pojazdów ciężkich PL wynosi od 6,6 mln do 17,5 mln. Ilość osi standardowych 130 kN w tej klasie jest zmienna i wynosi:
• 3,2 – 8,6 mln NE (osi 130 kN) dla nawierzchni podatnej,
• 4,8 – 13 mln NE (osi 130 kN) dla nawierzchni kompozytowej,
• 5,2 – 13,8 mln NE (osi 130 kN) dla nawierzchni półsztywnej oraz dla nawierzchni betonowej.

Wynika to z innego agresywnego oddziaływania ciężkich pojazdów na nawierzchnie podatne, kompozytowe (mieszane) i półsztywne. Oddziaływanie pojazdów na nawierzchnie wyrażone jest współczynnikiem agresywności CAM, który podany jest w każdej karcie katalogu i jest różny dla nawierzchni podatnych, mieszanych, półsztywnych i sztywnych.

Podłoża drogowe podzielone są na 4 klasy oznaczone:
• PF1 – moduł podłoża E od 20 do 50 MPa,
• PF2 – moduł podłoża E od 50 do 120 MPa,
• PF3 – moduł podłoża E od 120 do 200 MPa,
• PF4 – moduł podłoża E powyżej 200 MPa.

Podbudowy zasadnicze mogą być asfaltowe lub związane spoiwem hydraulicznym. Charakterystyczną cechą katalogu francuskiego jest mnogość i różnorodność typów nawierzchni na podbudowach związanych spoiwami hydraulicznymi. Stanowią one około 75% wszystkich typów nawierzchni asfaltowych. Pozostałe 25% to nawierzchnie podatne. Wśród nawierzchni na podbudowach związanych spoiwami hydraulicznymi dominują nawierzchnie półsztywne o stosunkowo cienkich warstwach asfaltowych (maksymalnie 6,5 cm przy lekkim ruchu i 16 cm przy bardzo ciężkim ruchu). Nawierzchnie półsztywne występujące w polskim katalogu mają grube warstwy asfaltowe i są odpowiednikiem francuskich nawierzchni kompozytowych.

Spoiwa hydrauliczne we Francji występują w licznych odmianach. Są to cement, popioły lotne, żużle hutnicze dwóch typów (żużle granulowane i żużle wstępnie przekruszone aktywowane) oraz spoiwę drogowe („grave-liant routier”). Występują różnorodne kombinacje warstw podbudów związanych tymi spoiwami.

Drugą cechą charakterystyczną podbudów francuskich związanych spoiwami hydraulicznymi jest zupełnie inna niż w Polsce charakterystyka materiałów. W Polsce podstawą charakterystyki jest wytrzymałość na ściskanie po okresie dojrzewania, zależnym od rodzaju spoiva. We Francji charakterystyka oparta jest o moduł sprężystości E i o parametr zmęczeniowy σ6, który oznacza naprężenie
rozciągające przy zginaniu, przy którym liczba powtarzalnych obciążeń wynosi \(N = 10^6 \). Do charakterystyki materiałów związanych spojwami hydraulicznymi nie stosuje się wytrzymałości na ściskanie.

Trzecia cecha wyróżniającą technologię francuską to stosunkowo wysoka sztywność warstw związanych spojwami hydraulicznymi, o modułach sprężystości \(E \) rzędu 12 GPa do 25 GPa dla warstw kruszyw związanych cementem, podczas gdy w Polsce są to moduły rzędu od 4 do 10 GPa [1].

Maksymalne grubości podbudów związanych spojwami hydraulicznymi w jednej warstwie to 30 cm, a minimalne to 15 cm. Tylko w jednym typie asfaltowych nawierzchni półsztywnych, o podbudowie z żużla granulowanego (typ GLg/GLg), i tylko przy ruchu lekkim TC2 podbudowa ma grubość 13 i 14 cm jeżeli spoczywa na podłożu gruntowym wzmocnionym do modułu \(E \geq 200 \) MPa.

Maksymalne grubości wszystkich warstw asfaltowych, dla 20 letniego okresu eksploatacji, przy ruchu TC6\(_2\) (3,2 – 8,6 pojazdów ciężkich PL), przy module podłoża \(E \geq 120 \) MPa, wynoszą w zależności od typu nawierzchni:

- nawierzchnie podatne - 33 cm,
- nawierzchnie kompozytowe - 23 cm,
- nawierzchnie półsztywne - od 10 do 12 cm.

Jak widać warstwy asfaltowe w nawierzchniach półsztywnych we Francji są bardzo cienkie. Ruch TC6\(_2\) odpowiada polskiej kategorii KR6.

"Couche de surface", co można przetłumaczyć jako „warstwy powierzchniowe” – obejmują warstwy ścieralną i wiążącą. Mogą być one wykonane w 3 lub 4 wariantach. Warstwy te oznaczone w tablicy 4 jako CS1, występujące przy wyższym ruchu, mają grubości od 8 do 10 cm, a CS2, występujące przy mniejszym ruchu, od 6 do 8 cm.

Warstwy ścieralne to:
- BBTM – beton asfaltowy w bardzo cienkiej warstwie („béton bitumineux très mince”) 2,5 cm,
- BBDr – beton asfaltowy drenażowy („béton bitumineux drainant”) 4 cm,
- BBMa – beton asfaltowy w cienkiej warstwie klasy „a” (béton bitumeux mince de classe “a”) 4 cm; BBMa to jeden z 3 typów mieszanek BBM, o najwyższej z BBM odporności na deformacje.

Warstwy wiążące to:
- BBM – beton asfaltowy w cienkiej warstwie najczęściej o nieciągłym uziarnieniu („béton bitumineux mince”) 4 cm,
- BBSG – beton asfaltowy o dużej zawartości ziarn grubych („béton bitumineux semi-grenu”) 6 cm; zawiera 50-65% ziarn powyżej 6,3 mm,
BBME – beton asfaltowy o wysokim module sztywności do cienkich warstw („béton bitumineux mince à module élevé”) 6 cm.

„Couche de surface” mogą występować jako jedna warstwa „warstwy powierzchniowa”, w tym przypadku warstwa ścieralna, o grubości 6 lub 8 cm, w zależności od ruchu. Może być ona wykonana w dwóch odmianach:

- BBSG – beton asfaltowy o dużej zawartości ziarn grubych („béton bitumineux semi-grenu”) 6 cm, zawiera 50-65% ziarn powyżej 6,3 mm,
- BBME – beton asfaltowy o wysokim module sztywności do cienkich warstw („béton bitumineux mince à module élevé”).

4.3. Nawierzchnie wybrane do porównania

Nawierzchnie wybrane do porównania z katalogów polskiego, niemieckiego i austriackiego przedstawiają Tablice 1, 2, 3 i 4. Wybrano tylko takie nawierzchnie, które można było porównać z nawierzchniami z polskiego katalogu.

4.3.1. Nawierzchnie wybrane z katalogu polskiego [1]

Do porównania z katalogu polskiego wybrano 4 typy nawierzchni pokazane w tablicy 4.1. Najczęściej stosuje się w Polsce typ A o podbudowie zasadniczej z kruszywa łamanego stabilizowanego mechanicznie. Pozostałe typy nawierzchni, podane w tablicy 4.1, stosuje się sporadycznie. Tablica 4.1 z polskiego katalogu podaje w 3 wierszu od góry liczbę osi standardowych 100 kN na dobę, przy 20-letnim okresie projektowym. Aby otrzymać liczbę osi standardowych w okresie 20 lat eksploatacji trzeba pomnożyć tę liczbę przez 20x365. Obliczoną w ten sposób liczbę osi standardowych 100 kN można porównywać z danymi z pozostałych katalogów.

4.3.2. Nawierzchnie wybrane z katalogu niemieckiego [3]

Do porównania z niemieckiego katalogu wybrano 4 typy nawierzchni, o podbudowach zasadniczych podobnych do nawierzchni polskich. Tablica 4.2, stanowiąca wyciąg z katalogu niemieckiego, podaje w 2 wierszu od góry wskaźnik liczbowy obciążenia ruchem B, który jest liczbą osi standardowych 100 kN w okresie obliczeniowym 30 lat.
Tablica 4.1. Nawierzchnie wybrane z katalogu polskiego [1]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba osi obciążeniowych 100 kN/paradyby</td>
<td>12 - 20</td>
<td>20 - 30</td>
<td>30 - 40</td>
<td>40 - 50</td>
<td>50 - 60</td>
<td>> 60</td>
</tr>
<tr>
<td>PODRUDOWA Z KRUSZYWA LAMANEGO STABILIZOWANEGO MECHANICZNIE LUB Z TLUCZENIA KAMIENNEGO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablica 4.2. Nawierzchnie wybrane z katalogu niemieckiego [3]

(Grubość warstw w cm; ▼ E_{0,2}- minimalny w MN/m²)

<table>
<thead>
<tr>
<th>Wiersz</th>
<th>Klasaenośność</th>
<th>SV</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ws. licz. czo. nachem w min</td>
<td>B</td>
<td>> 32</td>
<td>> 10 - 32</td>
<td>> 3 - 10</td>
<td>> 0,8 - 3</td>
<td>> 0,3 - 0,8</td>
<td>> 0,1 - 0,3</td>
</tr>
<tr>
<td>Grub. w. mrozoodp. nawierz.</td>
<td>50</td>
<td>60</td>
<td>75</td>
<td>85</td>
<td>65</td>
<td>75</td>
<td>85</td>
<td>65</td>
</tr>
</tbody>
</table>

Biurkowna warstwa nośna na warstwie mrozoodpornnej

| | Ws. licz. czo. nachem w min | B | > 32 | > 10 - 32 | > 3 - 10 | > 0,8 - 3 | > 0,3 - 0,8 | > 0,1 - 0,3 | ≤ 0,1 |
| Grub. w. mrozoodp. nawierz. | 30 | 41 | 51 | 60 | 50 | 59 | 49 | 39 | 29 | 19 |

Biurkowna warstwa nośna oraz warstwa nośna zwlażana spowodem hydraulicznym na warstwie mrozoodpornnej

| | Ws. licz. czo. nachem w min | B | > 32 | > 10 - 32 | > 3 - 10 | > 0,8 - 3 | > 0,3 - 0,8 | > 0,1 - 0,3 | ≤ 0,1 |
| Grub. w. mrozoodp. nawierz. | 30 | 41 | 51 | 60 | 50 | 59 | 49 | 39 | 29 | 19 |

Biurkowna warstwa nośna oraz warstwa nośna z kruszywa lamanaego na warstwie mrozoodpornnej

| | Ws. licz. czo. nachem w min | B | > 32 | > 10 - 32 | > 3 - 10 | > 0,8 - 3 | > 0,3 - 0,8 | > 0,1 - 0,3 | ≤ 0,1 |
| Grub. w. mrozoodp. nawierz. | 30 | 41 | 51 | 60 | 50 | 59 | 49 | 39 | 29 | 19 |
4.3.3. Nawierzchnie wybrane z katalogu austriackiego [4]

Tablica 4.3 stanowi wyciąg z katalogu austriackiego i zawiera 2 typy nawierzchni o podbudowach zasadniczych podobnych do nawierzchni polskich, z kruszywa łamanego niezwiązanego i ze stabilizacji cementem. W katalogu austriackim nie ma nawierzchni o podbudowach zasadniczych z chudego betonu, ani o podbudowach w pełni asfaltowych. W drugim wierszu tablicy 4.3 podano liczbę osi standardowych 100 kN w okresie obliczeniowym 20 lat, oznaczonych w Austrii jako BNLW.

<table>
<thead>
<tr>
<th>Klasa obciążenia (n=20 lat)</th>
<th>S</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNLW w min. osi 100 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ konstrukcji 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>asfaltowa + podbudowa asfaltowa + górna podbudowa stabilizowana cementem + dolna podbudowa niezwiązana spoiwem</td>
<td>23</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ konstrukcji 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>asfaltowa + podbudowa stabilizowana cementem + dolna podbudowa niezwiązana spoiwem</td>
<td>17</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E_{SLUP} ≥ 35 MN/m²

1) Dla większych obciążeń należy wykonać specjalne wymiarowanie konstrukcji

| | | | | | | | |
|----------------|-------------------|-------------------|
| Asfaltowa podbudowa i warstwa ścieralna według RVS 08.16.01 | Górna podbudowa niezwiązana spoiwem według RVS 08.15.01, Kruszywo łamane mieszane w wytwórni (min. C_{90/3}) |
| Podbudowa stabilizowana (ST-Z - cementem, lub ST-T – spoiwem hydraulicznym o niskiej początkowej i wysokiej końcowej wytrzymałości) według RVS 08.17.01 | Dolna podbudowa niezwiązana spoiwem według RVS 08.15.01 (C_{35}) |

4.3.4. Nawierzchnie wybrane z katalogu francuskiego [2]

Tablica 4.4 stanowi wyciąg z francuskiego katalogu i zawiera 5 wybranych nawierzchni francuskich. Spośród wielkiej liczby francuskich konstrukcji wybrano do porównania nawierzchnie projektowane dla założeń podobnych do stosowanych w Polsce, a w szczególności:
• Okres projektowy 20 lat (dla sieci niestrukturalnej dróg - VRNS),
• Klasa wzmocnionego podłoża PF3 – o module E od 120 MPa do 200 MPa,
• Wybrano nawierzchnie podobne do polskich o następujących podbudowach zasadniczych:
 o nawierzchnia podatna – asfaltowa warstwa powierzchniowa („couche de surface”) ułożona na podbudowie z mieszanki asfaltowej typu betonu asfaltowego w dwóch warstwach (o symbolu GB3/GB3),
 o nawierzchnia podatna – asfaltowa warstwa powierzchniowa ułożona na górnjej warstwie podbudowy z mieszanki asfaltowej typu betonu asfaltowego i dolnej warstwie podbudowy z kruszywa łamanego niezwiązanego (GB3/GNT),
 o nawierzchnia kompozytowa - asfaltowa warstwa powierzchniowa ułożona na górnjej warstwie podbudowy z mieszanki asfaltowej typu betonu asfaltowego i dolnej warstwie podbudowy z kruszywa связанego cementem (GB3/GC3),
 o nawierzchnia półsztywna - asfaltowa warstwa powierzchniowa ułożona na podbudowie z piasku связаного cementem (SC3).

Tablica 4 podaje w pierwszej kolumnie oznaczenie klasy ruchu i obciążenie ruchem wyrażone jako liczba ciężkich pojazdów PL, o masie co najmniej 3,5 tony, w okresie 20 lat. Aby otrzymać liczbę standardowych 130 kN, oznaczoną jako NE, liczbę PL należy pomnożyć przez współczynnik agresywności ruchu CAM podany na dole tablicy 4.4. Otrzymany wyniki będzie pewnym przybliżeniem.
Tablica 4.4. Nawierzchnie wybrane z katalogu francuskiego [2]

<table>
<thead>
<tr>
<th>Nr karty katalogowej</th>
<th>2 (VRNS)</th>
<th>25 (VRNS)</th>
<th>26 (VRNS)</th>
<th>15 (VRNS)</th>
<th>15 (VRNS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podbudowa:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>warstwa góra</td>
<td>beton asfaltowy GB3</td>
<td>beton asfaltowy GB3</td>
<td>beton asfaltowy GB3</td>
<td>beton asfaltowy GB3</td>
<td></td>
</tr>
<tr>
<td>warstwa dolna</td>
<td>beton asfaltowy GB3</td>
<td>kruszywo niezwiązane GNT</td>
<td>kruszywo niezwiązane GNT</td>
<td>kruszywo niezwiązane GNT</td>
<td></td>
</tr>
<tr>
<td>43,5 mln. PL</td>
<td>CS1</td>
<td>GB3 12 cm</td>
<td>GB3 13 cm</td>
<td>CS1</td>
<td>GB3 15 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS1</td>
<td>GC3 23 cm</td>
</tr>
<tr>
<td></td>
<td>CS1</td>
<td>GB3 10 cm</td>
<td>GB3 9 cm</td>
<td>CS1</td>
<td>GB3 13 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS1</td>
<td>GC3 21 cm</td>
</tr>
<tr>
<td></td>
<td>CS1</td>
<td>GB3 8 cm</td>
<td>GB3 8 cm</td>
<td>CS1</td>
<td>GB3 11 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS1</td>
<td>GC3 19 cm</td>
</tr>
<tr>
<td></td>
<td>CS2</td>
<td>GB3 14 cm</td>
<td>GB3 12 cm</td>
<td>CS2</td>
<td>GB3 20 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS2</td>
<td>SC3 24 cm</td>
</tr>
<tr>
<td></td>
<td>CS2</td>
<td>GB3 11 cm</td>
<td>GB3 11 cm</td>
<td>CS1</td>
<td>SC3 22 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS2</td>
<td>SC3 22 cm</td>
</tr>
<tr>
<td></td>
<td>CS2</td>
<td>GB3 8 cm</td>
<td>GB3 8 cm</td>
<td>CS1</td>
<td>SC3 22 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS2</td>
<td>SC3 22 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS2</td>
<td>SC3 22 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS2</td>
<td>SC3 22 cm</td>
</tr>
<tr>
<td>Wskaźnik agregatywności nóża CAM</td>
<td>CAM = 0,5</td>
<td>CAM = 0,5</td>
<td>CAM = 0,5</td>
<td>CAM = 0,75</td>
<td>CAM = 0,8</td>
</tr>
</tbody>
</table>

UWAGI:

1. W nawierzchni 25 (VRNS) „Cd Forme (MTLH)” oznacza podłoże gruntowe pod GNT związane spowodem hydraulicznym
2. CS – “Couche de surface” – warstwa powierzchniowa = warstwa ścieralna + warstwa wiąząca
3. CS1 – suma grubości warstw ścieralnej i wiążącej od 8 do 10 cm
4. CS 2 – suma grubości warstw ścieralnej i wiążącej od 6 do 8 cm
4.3.5. Wybrane nawierzchnie brytyjskie

W dalszych porównaniach wykorzystane zostały nawierzchnie przyjęte z nomogramu (rys. 4.1) według metody brytyjskiej. Opis metody brytyjskiej, ze względu na ograniczenia objętości tego opracowania został pominięty. Do porównań przyjęto nawierzchnie dla następujących warunków:

a) Podłoże wzmocnione klasy 2 - moduł sztywności $E \geq 100$ MPa,
b) Podbudowy zasadnicze: (a) asfaltowe i (b) z kruszyw związanych cementem,
c) Ruch określony w metodzie brytyjskiej w osiach standardowych 80 kN, przeliczono na 100 kN.

Rys.4.1. Nomogram brytyjski do wyznaczania grubości nawierzchni [5]

4.4. Różnice występujące w nawierzchniach katalogowych

Porównanie katalogów jest rzeczą bardzo trudną, ze względu na wiele różniących się czynników, do których zaliczyć można:

a) grubości warstw podbudów zasadniczych i warstw asfaltowych,
b) wymagania wobec modułów wzmocnionego podłoża pod podbudowami zasadniczymi,
c) metody pomiaru nośności podłoża i warstw podbudów,
d) wytrzymałości i rodzaje materiałów do podbudów zasadniczych związanych spoiwami hydraulicznymi,
e) obciążenia równoważnych osi standardowych,
f) długości okresu projektowego nawierzchni,
g) wielkości maksymalnego obciążenia ruchem i struktura ruchu.
Przyjęto zasadę jak najbardziej obiektywnego porównywania, z możliwie
wnikliwym uwzględnieniem wszystkich różnych czynników, aby otrzymać
wiarygodne wnioski.

4.4.1. Różne grubości podbudów zasadniczych i warstw asfaltowych

W rozpatrywanych katalogach w takich samych typach konstrukcji różne są
grubości podbudów zasadniczych i spoczywających na nich warstw asfaltowych.
W związku z tym, aby uzyskać porównywalne wielkości obliczono grubości
zastępcze nawierzchni, według metody CBR, ze wzoru:

\[H_z = \sum a_i \times H_i \]

gdzie:
\(H_z \) – grubość zastępcza nawierzchni wyrażona w cm tłucznia standardowego,
\(H_i \) – grubość rzeczywista warstwy i-tej, w cm,
\(a_i \) – współczynniki materiałowe.

Współczynniki materiałowe \(a_i \) określono przy uwzględnieniu właściwości
materiałów w poszczególnych krajach. Współczynniki materiałowe dla
nawierzchni polskich przyjęto z metody CBR, według [8]. Dla warstw związanych
cementem, różnych od polskich, do określenia współczynników \(a_2 \) wzięto pod
uwagę ich wytrzymałości i moduły sprężystości. Moduły sprężystości przyjęto z
dostępnych danych, a w przypadku braku takich danych moduły obliczono na
podstawie wytrzymałości warstwy na ściskanie ze wzoru Dempsey’a:

\[E = 4773 \sqrt{f_c} \]

gdzie:
\(E \) – moduł sprężystości warstwy kruszywa związanej cementem, MPa,
\(f_c \) – wytrzymałość na ściskanie warstwy kruszywa związanej cementem, MPa,
po 28 dniach.

Z mechaniki konstrukcji nawierzchni wynika, że współczynniki materiałowe są
proporcjonalne do pierwiastka trzeciego stopnia z modułu sprężystości warstwy,
jak podaje wzór:

\[a_i = a_k \left(\frac{E_i}{E_k} \right)^{\frac{1}{3}} \]

gdzie:
\(a_i, a_k \) – współczynniki materiałowe warstwy i-tej i k-tej,
\(E_i, E_k \) – moduły sprężystości warstwy i-tej i k-tej.

Wyniki obliczeń współczynników materiałowych \(a_i \) podano w tablicy 4.5.
Tablica 4.5. Współczynniki materiałowe \(a_i \) do obliczenia grubości zastępczej

<table>
<thead>
<tr>
<th>Warstwa zasadnicza, z kruszywa łamanej</th>
<th>Dane</th>
<th>Polska</th>
<th>Niemcy</th>
<th>Austria</th>
<th>Francja</th>
<th>Wielka Brytania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Współczynnik (a_0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warstwa zasadnicza związana hydraulicznie</th>
<th>Opis</th>
<th>Chudy beton</th>
<th>Podbudowa związana hydraulicznie (Hydraulisch Gebundene Tragschicht)</th>
<th>Nie stosuje się</th>
<th>Kruszywo związane cementem klasy 3 (Grave-ciment GC3)</th>
<th>Piaski związane cementem klasy 3 (Sable-ciment SC3)</th>
<th>Mieszanka związana hydraulicznie (Hydraulic Bound Material - HBM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wysokość na ścisłanie (R_{50}), MPa</td>
<td>6 - 9</td>
<td>7 - 12</td>
<td>-</td>
<td>Nie bada się</td>
<td>Nie bada się</td>
<td>Nie bada się</td>
<td>C8/10 lub C9/12</td>
</tr>
<tr>
<td>Moduł sprężystości, (E_r), MPa</td>
<td>13 100</td>
<td>14 700</td>
<td>-</td>
<td>23 000</td>
<td>17 200</td>
<td>15 100</td>
<td></td>
</tr>
<tr>
<td>Naprężenie przy 10⁶ cyklach obciążeń, (\sigma_{10}), MPa</td>
<td>Nie bada się</td>
<td>Nie bada się</td>
<td>-</td>
<td>0,75</td>
<td>0,75</td>
<td>Nie bada się</td>
<td></td>
</tr>
<tr>
<td>Obliczony współczynnik (a_2)</td>
<td>1,550</td>
<td>1,611</td>
<td>-</td>
<td>1,870</td>
<td>1,697</td>
<td>1,625</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warstwa zasadnicza stabilizowana cementem</th>
<th>Opis</th>
<th>Kruszywo stabilizowane cementem (R_{50}), MPa</th>
<th>Nie stosuje się do podbudów zasadniczych</th>
<th>Kruszywo stabilizowane cementem</th>
<th>Nie stosuje się do podbudów zasadniczych</th>
<th>Nie stosuje się do podbudów zasadniczych</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wysokość na ścisłanie (R_{50}), MPa</td>
<td>3 - 5</td>
<td>-</td>
<td>Min 5,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Współczynnik (a_2)</td>
<td>1,45</td>
<td>-</td>
<td>1,45</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mieszanki mineralno-asfaltowe na gorąco</td>
<td>Współczynnik (a_i)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

W Wielkiej Brytanii są cztery kategorie podbudów HBM od \(R_{28} \) = 9 do 20 MPa. Wybrano do porównania najsłabszą kategorię A, o wytrzymałości C8/10 lub C9/12.

Przyjęto, że warstwy asfaltowe z betonu asfaltowego i SMA w porównywanym krajobrazie (Polska, Francja, Niemcy i Austria) są do siebie podobne, a spośród brytyjskich warstw asfaltowych, które są wyraźnie inne niż w Europie kontynentalnej, wybrano typy podobne do betonu asfaltowego, z rodzajem asfaltów podobnych do stosowanych w Polsce (50 j. pen.).

4.4.2. Różne wymagania wobec modułów wzmocnionego podłoża pod podbudowami zasadniczymi

Podłoże pod konstrukcjami katalogowymi są wzmacniane w Niemczech i w Polsce do takiej samej wartości wtórnego modułu odkładzenia, co bardzo ułatwia porównania. Wymagany moduł wzmocnionego podłoża jest równy w obu krajach:

- \(E_2 = 100 \) MPa dla lekkiego ruchu oraz
- \(E_2 = 120 \) MPa dla cięższych ruchu (w Polsce większego od KR2 - ponad 0,51 mln osi 100 kN, a w Niemczech większego od kategorii V - ponad 0,3 mln osi 100 KN).

Różne od polskich i niemieckich wymagania względem modułu podłoża pod podbudową zasadniczą występują w katalogu austriackim. Katalog austriacki nie
podaje wartości wymaganego modułu pod górną warstwą podbudowy, tak jak katalog polski i niemiecki. Podaje natomiast wymagany pierwotny moduł odkształcenia pod dolną warstwą podbudowy na poziomie podłoża gruntuowego. Moduł ten powinien być $E_{v1UP} \geq 35$ MPa. Są duże trudności w przeliczeniu pierwotnego modułu odkształcenia na moduł wtorny.

Dolna warstwa podbudowy w katalogu austriackim pełni rolę wzmocnionego podłoża. Wykonana jest z kruszywa naturalnego o dobrym uziarnieniu, niezwiązanego spoiwem, według RVS 08.15.01. Grubość dolnej warstwy podbudowy z kruszywa naturalnego wynosi:

a) W przypadku podbudów zasadniczych z kruszywa łamanego - 30 cm dla wszystkich kategorii ruchu.

b) W przypadku podbudów zasadniczych stabilizowanych cementem - 20 cm dla wszystkich kategorii ruchu.

Autor tego opracowania przeprowadził obliczenia modułu zastępczego układu dwuwarstwowego i wykazał, że na dolnej warstwy podbudowy, pod podbudową zasadniczą wystąpi wtórny moduł odkształcenia równy:

- w przypadku a): w przedziale 115 - 135 MPa,

Okazuje się, że są to moduły podobne do określonych w polskim i w niemieckim katalogu.

Podłoża drogowe w katalogu francuskim podzielone są na 4 klasy jak opisano wyżej, w rozdziale 4.2.3. Do porównania wybrano najbliższą warunkom polskim klasę PF3 (moduł E od 120 do 200 MPa).

Wzmocnione podłoża w metodzie brytyjskiej podzielono na cztery klasy:

a) Klasa 1 moduł sztywności (w oryginale „stiffness modulus”) $E \geq 50$ MPa

b) Klasa 2 moduł sztywności $E \geq 100$ MPa

c) Klasa 3 moduł sztywności $E \geq 200$ MPa

d) Klasa I moduł sztywności $E \geq 400$ MPa

Do porównania wybrano najbliższą warunkom polskim klasę 2.

4.4.3. Różne metody pomiaru nośności podłoża i warstw podbudów

W Polsce, w Niemczech i w Austrii obowiązują badania płytowe modułu odkształcenia pod obciążeniem statycznym (płyta o średnicy 30 cm), zwane przez wiele lat w Polsce metodą VSS. Metodyka badania i obliczania modułów w Polsce i w Niemczech jest inna, ale różnice są raczej małe. W Niemczech do oceny nośności wzmocnionego podłoża dopuszczona jest także metoda pomiaru ugięć Benkelmana.
W Wielkiej Brytanii podstawowym badaniem wzmocnionego podłoża jest metoda dynamiczna FWD. Dopuszcza się badania lekką płytę dynamiczną po jej wyskalowaniu względem FWD. Nie stosuje się statycznej metody VSS.

We Francji moduły podłoża E wyznacza się przy badaniu płytowym z obciążeniem statycznym lub dynamicznym. Stosowane są także badania ugięć sprężystych według metod Lecroix i Benkelmana.

Z różnic pomiędzy metodami badawczymi wynikać mogą różnice w liczbowych wartościach modułów. O ile w przypadku Niemiec i Polski te różnice są niewielkie, to istotnie różne mogą być moduły z badań FWD i badań statycznych. Różnice te nie mogą jednak zasadniczo zmienić opisanych dalej trendów w porównaniu grubości nawierzchni katalogowych.

4.4.4. Różne charakterystyki mechaniczne podbudów zasadniczych z chudego betonu i związanych spoiwami hydraulicznymi

We Francji jest 8 typów mieszanek kruszyw i 6 typów mieszanek piasków związanych spoiwami hydraulicznymi. Do porównania z polską nawierzchnią o podbudowie z chudego betonu wybrano dwa materiały bliskie, ale jednak różne od polskiej podbudowy z chudego betonu (patrz tablica 4.5):

GC3 – kruszywo związane cementem o module $E = 23\ 000$ MPa i $\sigma_6 = 0,75$ MPa, oraz

SC3 – piasek związany cementem o module $E = 17\ 200$ MPa i $\sigma_6 = 0,75$ MPa.

Aby sprowadzić wszystkie typy podbudów związanych spoiwem hydraulicznym do wspólnego mianownika obliczono współczynniki materiałowe warstw a_2 podane w tablicy 4.5.

4.4.5. Różne ciężary równoważnych osi standardowych

Katalogi Polski, Niemiec i Austrii [1,2,3] operują standardową osią równoważną 100 kN. We Francji oś standardowa to 130 kN. W Wielkiej Brytanii stosuje się oś standardową 80 kN. Wymagało to przeliczenia na osie 100 kN, które wykonano w uproszczeniu według wzoru czwartej potęgi.
4.4.6. Długość okresu projektowego nawierzchni

Różne są okresy projektowe nawierzchni podatnych i półsztywnych, które wynoszą w Polsce i w Austrii 20 lat, a w Niemczech 30 lat. W Wielkiej Brytanii okres projektowy nowych nawierzchni wynosi 40 lat. Odstępstwa od 40 lat są w Wielkiej Brytanii dopuszczalne, jeżeli są ekonomicznie uzasadnione i uzyskają aprobatę instytucji zarządzającej [9]. We Francji okres projektowy wynosi 20 lat dla sieci niestrukturalnej dróg (VRNS) i 30 lat dla sieci strukturalnej (VRS). Drogi VRS są większego znaczenia a VNRS mniejszego znaczenia.

Wszystkie konstrukcje, niezależnie od długości okresu projektowego (20, 30 lub 40 lat) porównywano ze sobą na bazie sumarycznego ruchu obliczeniowego w całym okresie projektowym. Inaczej mówiąc nie brano pod uwagę dziennej obciążenia ruchem, ale cały ruch jaki wystąpi w okresie projektowym. Wynika to z podstawowej zasady w nowoczesnym projektowaniu nawierzchni. Nawierzchnie projektowane są na określony ruch obliczeniowy jaki muszą przenieść w całym okresie projektowym. W obliczeniach mniej ważne jest obciążenie dzienne. Przy określonej trwałości danej nawierzchni będzie ona służyła dłużej, jeżeli dzienne obciążenie ruchem będzie mniejsze, albo krócej jeżeli dzienne obciążenie ruchem będzie większe. Zasada ta jest powszechnie stosowana. Warto jednak dodać, że w dłuższym okresie eksploatacji oddziaływanie niszczących czynników środowiskowych (woda, mróz, zmiany wilgotności podłoża i warstw niezwiązanych, promieniowanie słoneczne i inne) będzie bardziej szkodliwe dla nawierzchni. Nawierzchnie projektowane na dłuższy okres obliczeniowy powinny więc mieć większy współczynnik bezpieczeństwa.

4.4.7. Ruch maksymalny

Ruch maksymalny na jaki projektowane są nawierzchnie wynosi:

- w katalogu polskim $N_{\text{max},100} > 14.6 \text{ mln}$, bez określania górnej granicy,
- w niemieckim $N_{\text{max},100} > 30 \text{ mln}$, bez określania górnej granicy,
- w katalogu austriackim to $N_{\text{max},100}=25 \text{ mln}$, z uwagą, że przy $N_{100}>25 \text{ mln}$ należy wykonać indywidualne obliczenia,
- w katalogu francuskim, dla nawierzchni podatnych $N_{\text{max},130} > 75 \text{ mln}$, co jest równoważne z $N_{\text{max},100}>214 \text{ mln}$, bez określania górnej granicy,
- w metodzie brytyjskiej konstrukcje podano w nomogramie z ograniczeniem górnym do $N_{\text{max},80}=400 \text{ mln}$, co jest równoważne z $N_{\text{max},100}=164 \text{ mln}$.

Jak widać w katalogu francuskim podaje się największe obciążenia przekazywane na nawierzchnie, 15 razy większe niż w katalogu polskim.
4.5. Porównanie konstrukcji nawierzchni o podbudowach zasadniczych z kruszywa łamanego niezwiązanego

Do porównania wzięto:

- z polskiego katalogu konstrukcję typu A, o podbudowie z kruszywa łamanego stabilizowanego mechanicznie (tablica 4.1),
- z niemieckiego RStO 01 konstrukcję typu 3 (tablica 4.2),
- z austriackiego konstrukcję typu 2 (tablica 4.3),

Konstrukcje typu A są w Polsce najczęściej stosowane. Materiały podbudów zasadniczych z kruszywa łamanego i mieszanki mineralno-asfaltowe są w Polsce, Niemczech, Austrii i Francji podobne.

Podbudowy z kruszywa łamanego mają w Polsce grubość 20 cm, w Niemczech 15 cm, a w Austrii 18 cm dla wszystkich kategorii ruchu. We Francji podbudowy z kruszywa łamanego mają inne grubości w obu typach GB3/GNT/CdForme oraz GB3/GNT, odpowiednio 12 cm i 20 cm. Te grubości są niezmienne dla wszystkich klas ruchu.

4.5.1. Porównanie grubości warstw asfaltowych na podbudowach zasadniczych z kruszywa łamanego

Na rys. 4.2 przedstawiono porównanie grubości warstw asfaltowych w nawierzchniach polskiej, niemieckiej, austriackiej. Na osi odciętych pokazano ruch obliczeniowy w całym okresie projektowym w skali logarytmicznej, wyrażony w osiach 100 kN, a na osi rzędnych pokazano grubość wszystkich warstw asfaltowych w cm, dla każdej kategorii ruchu.

Nawierzchnie katalogowe można uporządkować od najmniejszej do największej grubości warstw asfaltowych następująco:

- austriacka,
- niemiecka,
- polska.

Widać z rys. 4.2, że grubości warstw asfaltowych w konstrukcjach niemieckich są równe lub nieznacznie mniejsze od polskich (o 1 - 2 cm). Zwrócić należy jednak uwagę, że niemieckie podbudowy zasadnicze z kruszywa łamanego są cieńsze od polskich (w Niemczech 15 cm, w Polsce 20 cm).

Cieńsze od polskich, maksymalnie do 8 cm, są warstwy asfaltowe w katalogu austriackim, zwłaszcza przy największym i najmniejszym ruchu. Austriackie
podbudowy zasadnicze z kruszywa łamanego są nieznacznie cieńsze od polskich (w Austrii 18 cm, w Polsce 20 cm).

Rys. 4.2. Porównanie grubości warstw asfaltowych nawierzchni z katalogów polskiego, niemieckiego i austriackiego o podbudowach zasadniczych z kruszywa łamanego

Na rys. 4.3 i 4.4 pokazano grubości warstw asfaltowych na podbudowach z kruszywa łamanego z Polski, Austrii, Niemiec i dodatkowo z Francji. Na rys. 4.3 przedstawiono dane z konstrukcji francuskiej Nr 25 - GB3/GNT/CdForme(MTLH), w której podbudowa z kruszywa łamanego leży na warstwie wzmocnionego podłoża związanej hydraulicznie. Rys. 4.4 przedstawia dane z konstrukcji francuskiej Nr 26 - GB3/GNT, w której podbudowa z kruszywa łamanego leży na warstwie wzmocnionego podłoża niezwiązanego hydraulicznie. W obu rozpatrywanych konstrukcjach francuskich podłoże wzmocnione ma moduł od $E = 120$ MPa do $E = 200$ MPa.

Grubości warstw asfaltowych w katalogu francuskim, w obu rozpatrywanych przypadkach są nieznacznie mniejsze niż w Polsce.
Rys. 4.3. Porównanie grubości warstw asfaltowych nawierzchni z katalogów polskiego, niemieckiego, austriackiego i francuskiego o podbudowach zasadniczych z kruszywa łamanego (z Francji typ GB3/GNT/CdForme(MTLH) – na podłożu związanym hydraulicznie)

Rys. 4.4. Porównanie grubości warstw asfaltowych nawierzchni z katalogów polskiego, niemieckiego, austriackiego i francuskiego o podbudowach zasadniczych z kruszywa łamanego (z Francji typ GB3/GNT – na podłożu niezwiązanym hydraulicznie)
4.5.2. Porównanie grubości zastępczych nawierzchni o podbudowach zasadniczych z kruszywa łamanego

Na rys. 4.5 przedstawiono porównanie grubości zastępczych nawierzchni o podbudowach zasadniczych z kruszywa łamanego z Polski, Austrii i Niemiec. Podane wartości grubości zastępczych H_z należy podzielić przez 2 aby otrzymać równoważną grubość warstwy betonu asfaltowego (BA).

Nawierzchnie katalogowe można uporządkować od najmniejszej do największej grubości zastępczej następująco:

- austriacka i niemiecka (bardzo podobne),
- polska

Z rys. 4.5 widać, że nawierzchnie polskie są najgrubsze. Przy ruchu lekkim KR1 nawierzchnie niemieckie i polskie są prawie identyczne. Przy KR2 nawierzchnie polskie są grubsze od niemieckich o $\Delta H_z = 5$ cm, czyli 2,5 cm betonu asfaltowego (BA). Przy ruchu KR6 polskie nawierzchnie są grubsze od niemieckich o $\Delta H_z = 7$ cm (3,5 cm BA). Lokalnie różnice w projektowaniu mogą być znacznie większe. Na przykład przy ruchu obliczeniowym, równym $N = 20$ mln osi 100 kN różnica wynosi $\Delta H_z = 15$ cm (7,5 cm BA). Najmniejsze są grubości zastępcze nawierzchni austriackich. Przy bardzo ciężkim ruchu są one o $\Delta H_z = 18$ cm cienśniej od polskich (9 cm BA).

Rys. 4.5. Porównanie grubości zastępczych H_z nawierzchni z katalogów polskiego, niemieckiego i austriackiego o podbudowach zasadniczych z kruszywa łamanego
Na rys. 4.6 i 4.7 dodano do porównania grubości zastępcze nawierzchni francuskich, dwóch typów. Na rys. 4.6 dodano nawierzchnię francuską Nr 25 GB3/GNT/CdForme(MTLH), w której podbudowa z kruszywa niezwiązanego leży na warstwie wzmocnionego podłoża związanego hydraulicznie. Na rys. 4.7 dodano nawierzchnię francuską Nr 26 GB3/GNT, w której podbudowa z kruszywa niezwiązanego leży na warstwie wzmocnionego podłoża niezwiązanego hydraulicznie.

W obu przypadkach konstrukcje katalogowe z Francji mają grubości zastępcze mniejsze niż polskie. Szczególnie to widać na rys. 4.6, gdzie francuska podbudowa z kruszywa łamanego leży na podłożu wzmocnionym hydraulicznie. Jest to konstrukcja bardzo podobna pod względem układu warstw do polskiej. W praktyce, w Polsce podbudowa z kruszywa łamanego leży prawie zawsze na stabilizacji cementem, co dokładnie odpowiada francuskiej nawierzchni typu GB3/GNT/CdForme(MTLH). Przy dużym ruchu grubość zastępcza konstrukcji francuskiej tego typu jest o $\Delta H = 15$ cm (w przeliczeniu 7,5 cm BA) cieńsza od polskiej.

Rys. 4.6. Porównanie grubości zastępczych H_z nawierzchni o podbudowach zasadniczych z kruszywa łamanego z katalogów polskiego, austriackiego, niemieckiego i francuskiego (z Francji typ GB3/GNT/CdForme(MTLH) – na podłożu związanym hydraulicznie)
Rys. 4.7. Porównanie grubości zastępczych H_z nawierzchni o podbudowach zasadniczych z kruszywa łamanego z katalogów polskiego, austriackiego, niemieckiego i francuskiego (z Francji typ GB3/GNT – na podłożu wzmocnionym niezwiązanym hydraulicznie)

Podejście francuskie do projektowania ilustruje rys. 4.8. Przy podłożu niezwiązanym spoiwem hydraulicznym wymagane grubości nawierzchni są znacznie większe niż przy podłożu związanym hydraulicznie. Różnice w grubości zastępczej są większe maksymalnie o $\Delta H_z = 14 \text{ cm}$. Wynika to z większej mobilizacji nośności warstwy kruszywa niezwiązanego, wtedy gdy leży ono na podłożu sztywnym, związanym hydraulicznie. Gdy warstwa kruszywa niezwiązanego leży na podłożu podatnym jego nośność jest znacznie mniejsza. Bardziej szczegółowa analiza tego zagadnienia wymagałaby analizy z uwzględnieniem nieliniowości sprężystej w pracy warstw niezwiązanych.
Rys. 4.8. Porównanie grubości zastępczych dwóch typów nawierzchni z katalogu francuskiego o podbudowach zasadniczych z kruszywa łamanego (podłoża związane hydraulicznie i podłoża niezwiązanego hydraulicznie).

4.6. Porównanie konstrukcji nawierzchni o podbudowach asfaltowych ułożonych wprost na wzmocnionym podłożu

Rys. 4.9 przedstawia porównanie konstrukcji nawierzchni o podbudowie asfaltowej ułożonej wprost na warstwie wzmocnionego podłoża (typ zbliżony do amerykańskiej nawierzchni „full depth pavement”). Wzięto pod uwagę nawierzchnie polskie (typ C), niemieckie (typ 1), francuskie (typ GB3/GB3) i brytyjskie.

Do porównania z katalogiem polskim wybrano nawierzchnie brytyjskie z warstwami asfaltowymi typu DBM50 (Dense Bitumen Macadam) i HDM50 (Heavy Duty Macadam) z zastosowaniem asfaltu o penetracji 50. W Wielkiej Brytanii nie stosuje się betonu asfaltowego. Wybrane mieszanki brytyjskie z zastosowaniem asfaltu o penetracji 50, które są najbliższe betonowi asfaltowemu stosowanemu w Polsce. Francuskie warstwy asfaltowe GB3 oraz warstwy niemieckie są podobne do polskich. W Austrii nie ma takiego typu nawierzchni.
Rys. 4.9. Porównanie grubości warstw asfaltowych ułożonych bezpośrednio na wzmocnionym z katalogu polskiego, niemieckiego, francuskiego i z metody brytyjskiej

Jak widać z rysunku najcieńsze są nawierzchnie francuskie, potem kolejno niemieckie, brytyjskie i polskie. Warstwy asfaltowe nawierzchni polskich są grubsze od 1 do 6 cm od niemieckich i od 4 do 7 cm od francuskich.

4.7. Porównanie konstrukcje nawierzchni o podbudowach zasadniczych z chudego betonu i związanych spoiwem hydraulicznym

Porównano konstrukcje typu F z polskiego katalogu, na podbudowach zasadniczych z chudego betonu, konstrukcje typu 2 z niemieckiego katalogu na podbudowie związanej hydraulicznie HGT i konstrukcje według metody brytyjskiej na podbudowie związanej hydraulicznie HBM kategorii A. Z katalogu francuskiego wzięto dwa typy nawierzchni (GB3/GC3 i SC3). W katalogu austriackim typ nawierzchni o podbudowie związanej spoiwem hydraulicznym o dużej wytrzymałości nie występuje, jest tylko stabilizacja cementem.

W porównywanych w tym miejscu nawierzchniach podbudowy związane hydraulicznie mają następujące parametry:

- Niemieckie mają dla każdej klasy ruchu grubość 15 cm i wytrzymałość na ściskanie R_{28} = 7 – 12 MPa.
- Polskie (chudy beton) mają grubości dla każdej klasy ruchu grubość 20 cm i \(R_{28} = 6 - 9 \) MPa.
- Brytyjskie mają grubości zmienne w zależności od obciążenia ruchem i wytrzymałości C8/10 lub C9/12.
- Francuskie podbudowy typu GB3/GC3 stosowane są do ruchu ciężkiego, w przybliżeniu od \(5,4 \times 10^6 \) do \(9,1 \times 10^7 \) mln osi 100 kN. Mają grubości od 19 do 23 cm i moduły sprężystości \(E = 23 \ 000 \) MPa. Nie określa się wytrzymałości na ściskanie.
- Francuskie podbudowy typu SC3 stosowane są do lekkiego i średniego ruchu, w przybliżeniu od \(0,2 \times 10^5 \) do \(7,1 \times 10^6 \) mln osi 100 kN. Mają grubości od 22 do 24 cm i moduły sprężystości \(E = 17 \ 200 \) MPa. We Francji nie określa się wytrzymałości na ściskanie.

Różne wytrzymałości 28-dniowe podbudów na ściskanie oraz różne moduły uwzględniono w porównaniu przez obliczenie współczynnika materiałowego \(a_2 \) (tablica 4.1).

4.7.1. Porównanie grubości warstw asfaltowych na podbudowach zasadniczych z chudego betonu i związanych spoiwem hydraulicznym

Rys. 4.10 przedstawia grubości warstw asfaltowych na podbudowach związanych spoiwami hydraulicznymi. Nawierzchnie katalogowe można pod względem grubości warstw asfaltowych uporządkować następująco od najmniejszej do największej:

- francuskie półsztywne SC3,
- brytyjskie,
- francuskie kompozytowe GB3/GC3,
- niemieckie,
- polskie.

Najcieńsze warstwy asfaltowe występują w przypadku francuskich konstrukcji półsztywnych SC3, zapewne ze względu na grubie warstwy podbudowy związane cementem o wysokim module sprężystości (17 200 MPa). We Francji w nawierzchniach półsztywnych, do których należy konstrukcja SC3 na podbudowie związanej spoiwem hydraulicznym leży tylko warstwa powierzchniowa ("couche de surface") o stosunkowo w małej grubości (patrz opis katalogu francuskiego powyżej).

Cienkie są warstwy asfaltowe zaprojektowane według metody brytyjskiej, co może być spowodowane bardzo wysoką wytrzymałością podbudów związanych spoiwami hydraulicznymi (C8/10 lub C9/12).

Warstwy asfaltowe niemieckie są konsekwentnie cieńsze od polskich, z wyjątkiem ruchu lekkiego KR1 i KR2, gdzie są wyraźnie grubsze (niemieckie 14
cm, polskie 8 cm), prawdopodobnie ze względu na spękania odbite. W tym przypadku wytrzymałości niemieckich podbudów na ściskanie są nieznacznie wyższe od polskich.

4.7.2. Porównanie grubości zastępczych nawierzchni na podbudowach zasadniczych z chudego betonu i związanych cementem

Rys. 4.11 przedstawia grubości zastępcze nawierzchni na podbudowach zasadniczych z chudego betonu i związanych spoiwem hydraulicznym. Nawierzchnie katalogowe można pod względem grubości zastępczych uporządkować następująco od najmniejszej do największej

- brytyjskie,
- francuskie półsztywne SC3,
- niemieckie,
- francuskie kompozytowe GB3/GC3,
- polskie.

Grubości zastępcze nawierzchni brytyjskich są zdecydowanie mniejsze do polskich, po za ruchem KR1. Maksymalnie różnice dochodzą do $\Delta H_z = 12$ cm (6 cm BA).
Przy ruchu KR1 i KR2 grubości zastępcze nawierzchni niemieckich są większe niż polskich. Przy większym ruchu nawierzchnie polskie są grubsze od niemieckich o ΔHz rzędu 8 do 11 cm. Lokalnie różnice są większe, na przykład przy $N = 20$ mln wynoszą aż $\Delta Hz = 16$ cm (8 cm BA).

Grubości zastępcze nawierzchni francuskich typu kompozytowego GB3/GC3 są podobne do polskich i są wyraźnie grubsze od niemieckich. Grubości zastępcze nawierzchni francuskich typu półsztywnego SC3 są podobne do niemieckich i są cieńsze od polskich.

Rys. 4.11. Porównanie grubości zastępczych H_z konstrukcji nawierzchni o podbudowie z chudego betonu z polskiego katalogu z konstrukcjami o podbudowie związanej spoiwem hydraulicznym z katalogów francuskiego niemieckiego i z metody brytyjskiej

4.8. Porównanie konstrukcji nawierzchni na podbudowie z kruszywa stabilizowanego cementem lub innym spoiwem hydraulicznym

Porównano nawierzchnie z Polski i Austrii. W katalogach niemieckim, francuskim i w metodzie brytyjskiej nie występują podbudowy zasadnicze związane cementem lub innym spoiwem hydraulicznym o małej wytrzymałości, rzędu $R_m = 5$ MPa.
W katalogu austriackim górna warstwa podbudowy ze stabilizacji cementem ma grubość od 18 cm do 30 cm, a w Polsce od 16 do 22 cm. Wytrzymałość stabilizacji cementem w Austrii wynosi $R_{c7} \geq 2,5 \, \text{MPa}$ [10], co odpowiada $R_{c28} \geq 5 \, \text{MPa}$. W Polsce wytrzymałość wynosi $R_{c28} = 3 – 5 \, \text{MPa}$. Wytrzymałość podbudowy austriackiej jest nieznacznie większa niż polskiej.

Z porównania na rys. 4.12 wynika, że w Austrii istotnie cieńsze są warstwy asfaltowe (od 5 do 12 cm) na podbudowie zasadniczej z kruszywa stabilizowanego cementem lub innym spoiwem hydraulicznym. Zadziwiająco cienkie są w Austrii warstwy asfaltowe dla bardzo ciężkiego ruchu (austriackie 17 cm, a polskie 29 cm). Nie tłumaczy tego minimalna różnica w wytrzymałości podbudów stabilizowanych cementem.

Grubości zastępcze polskich nawierzchni katalogowych są grubsze od austriackich od $\Delta H_z = 7 \, \text{cm}$ (3,5 cm BA) przy lekkim ruchu do $\Delta H_z = 12 \, \text{cm}$ (6 cm BA) przy ciężkim ruchu (rys. 12). Tutaj różnice są mniejsze, ponieważ austriackie podbudowy stabilizowane przy ciężkim ruchu ($N_100 > 4 \, \text{mln}$) są grubsze od polskich (odpowiednio 30 cm i 20 – 22 cm).

Rys. 4.12. Porównanie grubości warstw asfaltowych na podbudowie z kruszywa stabilizowanego cementem z katalogu austriackiego i z katalogu polskiego.
Rys. 4.13. Porównanie grubości zastępczych nawierzchni na podbudowie z kruszywa stabilizowanego cementem z katalogu austriackiego i z katalogu polskiego

4.9. Wnioski

2. Katalogi Austrii, Niemiec i Francji oraz metoda Wielkiej Brytanii mają „wsparcie” w postaci systemu norm, wytycznych i instrukcji tworzących zwarty system. Bardzo częste w katalogach i w metodzie brytyjskiej są odsyłacze do przepisów szczegółowych. W Polsce takiego systemu niestety nie ma, co bardzo poważnie utrudnia korzystanie z katalogu oraz proces weryfikacji istniejącego katalogu.

3. Sformułowania katalogów Austrii, Niemiec i Francji oraz metody Wielkiej Brytanii są jasne, precyzyjne i jednoznaczne, nie pozostawiają miejsca na dowolną i różnicą interpretację.
4. Podstawowy wniosek jaki wynika z przeprowadzonego porównania to fakt, że zdecydowana większość polskich nawierzchni katalogowych jest istotnie grubsza od wszystkich innych porównywanych nawierzchni katalogowych i od nawierzchni zaprojektowanych według metody brytyjskiej. Tylko sporadycznie, dla bardzo małego ruchu, polskie nawierzchnie katalogowe mają grubości podobne lub nieznacznie mniejsze od pozostałych. Różnice są tym większe im większy jest ruch obliczeniowy.

5. Wynika stąd kolejny wniosek, że należy ponownie rozważyć założenia przyjęte przy budowie polskiego katalogu z 1997 r., przeprowadzić nowe obliczenia i zmniejszyć odpowiednio grubości warstw nawierzchni w nowym polskim katalogu.

6. Nawierzchnie są projektowane na okres obliczeniowy 40 lat w Wielkiej Brytanii, 30 lat we Francji dla dróg sieci strukturalnej (dużego znaczenia), 30 lat w Niemczech, 20 lat we Francji dla dróg sieci niestrukturalnej (mniejszego znaczenia), 20 lat w Austrii i Polsce. Wydłużanie okresu obliczeniowego jest trendem światowym i powinno być uwzględnione w Polsce.

7. Równoważnym obciążeniem osi standardowej jest 130 kN we Francji, 100 kN w Austrii, Niemczech i w Polsce oraz 80 kN w Wielkiej Brytanii. Legalny limit maksymalnego obciążenia osi pojedynczej o kołach bliźniaczych wynosi 130 kN we Francji, 115 kN w Austrii, Niemczech i Wielkiej Brytanii. W Polsce limit maksymalnego obciążenia osi jest różny i wynosi 80 kN, 100 kN i 115 kN w zależności od znaczenia drogi. Jak widać równoważne obciążenie osi standardowej nie musi być równe maksymalnemu dopuszczalnemu obciążeniu osi. Przyjmując oś standardową 80 kN, albo 100 KN można bardzo dobrze projektować nawierzchnie w kraju, gdzie obowiązuje limit obciążenia osi pojedynczej 115 kN. Wynika stąd wniosek, że w nowym polskim katalogu może pozostać bez zmiany oś standardowa 100 kN, mimo że w perspektywie kilku lat na polskich drogach wprowadzony zostanie jednolity limit obciążenia osi pojedynczej 115 kN.

8. Nawierzchnie asfaltowe projektowane są na coraz większe obciążenia ruchem. Ruch maksymalny w okresie obliczeniowym nawierzchni, wyrażony w osiach standardowych 100 kN to:
 - w Polsce N>14, 6 mln,
 - w Austrii N=25 mln,
 - we Francji N=214 mln,
 - w Niemczech N≥30 mln,
 - w Wielkiej Brytanii N=164 mln.
Obserwuje się tendencję wzrostu ruchu maksymalnego.
9. Katalogi francuski i metoda brytyjska dają duże możliwości wyboru typu wzmocnień podłoża i wymaganych modułów wzmocnionego podłoża (od $E = 50$ do 400 MPa). Jest to uzasadnione i pozwala na bardziej wnikliwe projektowanie.

11. Typy podbudów zasadniczych są zbliżone w porównywanych krajach, aczkolwiek występują pewne istotne różnice.

12. Podbudowy zasadnicze związane spoiwami hydraulicznymi we Francji i w Wielkiej Brytanii mają znacznie większe wytrzymałości i moduły sprężystości od podbudów polskich. Również podbudowy tego typu w Niemczech mają wytrzymałości większe niż w Polsce. W katalogach Francji i Niemiec i w metodzie Wielkiej Brytanii nie ma podbudów zasadniczych w postaci stabilizacji cementem o małej wytrzymałości. Jest to uzasadnione i powinno być uwzględnione w nowym katalogu.

14. Grubości nawierzchni o podbudowach zasadniczych z kruszywa łamanego w katalogach niemieckim i austriackim są mniejsze niż w polskim. Różnice w grubości zastępczej nawierzchni polskich w porównaniu z nawierzchniami niemieckimi dochodzą do 7 cm (czyli 3,5 cm betonu asfaltowego BA), z austriackimi do 18 cm (9 cm BA). Różnice są małe dla lekkiego ruchu KR1 i rosną zdecydowanie dla ciężkiego ruchu KR6.

15. We Francji grubość warstw nawierzchni o podbudowach zasadniczych z kruszywa łamanego zależy od tego, czy podłoże na którym leży taka podbudowa jest lub nie jest związane spoiwem hydraulicznym. Jeżeli wzmocnione podłoże pod podbudową z kruszywa jest związane hydraulicznie konstrukcja nawierzchni jest istotnie cieńsza i może być stosowana do większego ruchu. W obu przypadkach grubości zastępcze nawierzchni francuskich o podbudowach z kruszywa są mniejsze niż polskich.
16. Grubości warstw asfaltowych nawierzchni o podbudowach zasadniczych z betonu asfaltowego ułożonych wprost na wzmacnionym podłożu (odpowiedników amerykańskich „full depth pavements”) w katalogu niemieckim, francuskim i w metodzie brytyjskiej są mniejsze niż w katalogu polskim. W Austrii nie stosuje się takich nawierzchni.

17. Grubości warstw asfaltowych na podbudowach z chudego betonu lub związanych hydraulicznie o wysokiej wytrzymałości są podobne w Polsce i w Niemczech, a istotnie mniejsze we Francji i w Wielkiej Brytanii. Grubości zastępcze tych nawierzchni są największe w Polsce. Nie dotyczy to lekkiego ruchu KR1 i KR2, ponieważ w Niemczech stosuje się wtedy minimalną grubość warstw asfaltowych 14 cm, w Wielkiej Brytanii 10 cm, a w Polsce 8 cm. W Austrii nie stosuje się takich nawierzchni.

18. Warstwy asfaltowe na podbudowach zasadniczych stabilizowanych społem hydraulicznym (o małej wytrzymałości) są zadziwiająco cienkie w Austrii (17 cm przy bardzo ciężkim ruchu KR6, w Polsce 29 cm). Grubości zastępcze tych nawierzchni są grubsze w Polsce. We Francji, w Niemczech i w Wielkiej Brytanii nie stosuje się takich podbudów zasadniczych.

4.10. Literatura

[4] Oberbaubemessung RVS 03.08.63, Österreichische Forschungsgesellschaft Strasse, Schiene, Verkehr, Wydanie z 1 kwietnia 2008,
5. Określenie temperatury ekwiwalentnej do projektowania konstrukcji nawierzchni w Polsce

Opracował: dr inż. Marek Pszczoła

5.1. Wprowadzenie

W obliczeniach wykorzystano dostępne dane temperaturowe pochodzące ze stacji meteorologicznych, zlokalizowanych na terytorium całej Polski. Na tej podstawie wyznaczano temperaturę warstw asfaltowych wykorzystując metodę Instytutu Asfaltowego.

5.2. Dostęp do danych meteorologicznych

5.2.1. Wprowadzenie

Dane meteorologiczne, które były wymagane do obliczeń temperatury ekwiwalentnej pozyskane zostały z bazy danych serwera National Climatic Data Center (NCDC) [1]. Udostępnione dane opierają się na bazie danych klimatycznych gromadzonych przez Światową Organizację Meteorologiczną (ang. „WMO – World Meteorological Organization”) w ramach programu WWWP: „World Weather Watch Program”. Zgodnie z informacją przedstawioną przez
WMO udostępnione dane meteorologiczne mogą być wykorzystywane w sposób nieograniczony do celów badawczych. Weryfikacja i potwierdzenie poprawności uzyskanych danych zostanie przedstawione w dalszej części rozdziału.

5.2.2. Procedura uzyskania danych meteorologicznych

Procedura uzyskania danych meteorologicznych z serwera NCDC [1] polegała na:

- określeniu kraju, dla którego dane miały być wyszukiwane,
- zdefiniowaniu potrzebnych danych meteorologicznych z każdego dnia rozpatrywanego okresu, pomierzonych tuż nad powierzchnią terenu (ang. „Surface Data, Global Summary of the Day”),
- wyborze stacji meteorologicznej.

Przykładowe dane z serwera NCDC przedstawiono na rysunku 5.1.

![Rysunek 5.1. Przykład danych z serwera NCDC – wybór stacji meteorologicznych](image)

W bazie danych zlokalizowanych jest ponad 70 stacji meteorologicznych z terenu całej Polski jednak w części z nich dane klimatyczne rejestrowane były w krótkich okresach czasu. Szczegółowy sposób wyboru stacji meteorologicznych do dalszych analiz przedstawiony został w dalszej części rozdziału.

W analizie danych temperaturowych przyjęto 30-letni okres czasu obejmujący przedział od 1 stycznia 1981r. do 31 grudnia 2010r. Przyjęcie tak długiego okresu czasu wynika z konieczności uwzględnienia okresowych rocznych lub kilkuletnich zmian klimatycznych. Przykład możliwości wyboru przedziału czasowego z serwera NCDC przedstawiono na rysunku 5.2. W następnym kroku otrzymano plik tekstowy z danymi klimatycznymi (rysunek 5.3).
Rysunek 5.2. Przykład danych z serwera NCDC – wybór przedziału czasowego

Rysunek 5.3. Przykład danych klimatycznych (wartości temperatury wyrażone w stopniach Fahrenheita)

Rysunek 5.3 przedstawia przykład danych meteorologicznych uzyskanych z serwera National Climatic Data Center. Wygenerowany przez serwer plik tekstowy zawiera następujące dane:

- **STN---** - numer stacji meteorologicznej, np. dla lokalizacji Gdańsk Rędzino numer STN wynosi: 121500,
- **WBAN** - numer historyczny stosowany wcześniej przez Siły Powietrzne: Stanów Zjednoczonych (Weather Bureau Air Force Navy),
- **YEARMODA** - rok, miesiąc i dzień
- **TEMP** - średnie dobowe wartości temperatury, [°F],
- **COUNT** - liczba przeprowadzonych obserwacji (pomiarów) klimatycznych w ciągu doby, wpływająca na uzyskane wartości średnie,
- MAX - maksymalna wartość temperatury zanotowana w ciągu doby, [°F],
- MIN - minimalna wartość temperatury zanotowana w ciągu doby, [°F],
- WDSP - średnia prędkość wiatru w ciągu doby w jednostkach [knot] (1 knot = 0,514 m/s),
- MXSPD - maksymalna prędkość wiatru w ciągu doby, [knot].

Pomimo wielu możliwych danych meteorologicznych do dalszych analiz temperatury ekwiwalentnej wykorzystywane były dane średniej temperatury powietrza w ciągu doby.

5.2.3. Weryfikacja poprawności uzyskanych danych temperaturowych

Przeliczenia wartości temperatur podanych w stopniach Fahrenheita na stopnie Celsjusza wykonywano w oparciu o następującą zależność:

\[T_{\text{Celsjusz}} = \frac{5}{9} (T_{\text{Fehrenheit}} - 32), ^\circ\text{C} \]

W tablicy 5.2 przedstawiono dane Instytutu Meteorologii i Gospodarki Wodnej zawarte w Raporcie GUS [2] dla stacji meteorologicznej we Wrocławiu.

Z przedstawionych w tablicach 5.1 i 5.2 wartości wynika, że różnice pomiędzy średnimi miesięcznymi temperaturami powietrza wyznaczonymi dla poszczególnych miesięcy nie przekraczają 0,1°C. Potwierdza to poprawność danych temperaturowych uzyskanych z bazy National Climatic Data Center, a udostępnionych poprzez Światową Organizację Meteorologiczną.
Tablica 5.1. Obliczone średnie miesięczne temperatury powietrza dla stacji we Wrocławiu w roku 2009 na podstawie średnich dobowych temperatur uzyskanych z bazy danych NCDC [1]

<table>
<thead>
<tr>
<th>Miesiąc</th>
<th>Styczeń</th>
<th>Luty</th>
<th>Marzec</th>
<th>Kwiecień</th>
<th>Maj</th>
<th>Czerwiec</th>
<th>Lipiec</th>
<th>Sierpień</th>
<th>Wrzesień</th>
<th>Październik</th>
<th>Listopad</th>
<th>Grudzień</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia w st F</td>
<td>10,6</td>
<td>13,5</td>
<td>17,2</td>
<td>21,0</td>
<td>24,8</td>
<td>28,6</td>
<td>30,5</td>
<td>32,3</td>
<td>34,1</td>
<td>35,9</td>
<td>37,7</td>
<td>39,5</td>
</tr>
<tr>
<td>Średnia w st C</td>
<td>-2,5</td>
<td>0,1</td>
<td>4,5</td>
<td>12,2</td>
<td>14,2</td>
<td>15,6</td>
<td>19,4</td>
<td>19,4</td>
<td>15,6</td>
<td>7,9</td>
<td>6,8</td>
<td>-0,4</td>
</tr>
</tbody>
</table>

Tablica 5.2. Średnie miesięczne temperatury powietrza zanotowane we Wrocławiu w roku 2009 według Raportu [2] (dane IMiGW)

| Średnia miesięczna temperatura powietrza w stopniach Celsjusza w miesiącu: |
|-----------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Miesiąc | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII |
| Temperatura | -2,5 | 0,1 | 4,5 | 12,2 | 14,2 | 15,6 | 19,4 | 19,4 | 15,6 | 7,9 | 6,8 | -0,4 |

5.3. Metodyka obliczeń temperatury ewiwalentnej

Metodyka przeprowadzonych analiz temperatury ewiwalentnej obejmowała następujące etapy:

1. Wybór lokalizacji stacji meteorologicznych na terenie Polski, dla których dane temperaturowe były analizowane.

2. Wyznaczenie średnich temperatur miesięcznych w analizowanym okresie czasu dla poszczególnych stacji meteorologicznych.
3. Obliczenie średnich temperatur miesięcznych warstw asfaltowych nawierzchni według procedury Instytutu Asfaltowego.

4. Obliczenie trwałości zmęczeniowej nawierzchni podatnej oraz półsztywnej dla wszystkich kategorii ruchu (KR1 – KR6) o grubościach podanych w obecnym katalogu. Dla nawierzchni podatnej analizowano konstrukcję z warstwą podbudowy z kruszywa łamanego, natomiast dla nawierzchni półsztywnej konstrukcję z warstwą podbudowy stabilizowanej cementem. Analizowany zakres temperatur do obliczeń trwałości zmęczeniowej obejmował przedział od -20°C do +30°C z krokiem obliczeniowym co 5°C.

6. Na podstawie zależności trwałości zmęczeniowej od temperatury N(T), a także obliczonych wcześniej średnich miesięcznych temperatur warstw asfaltowych dla poszczególnych lokalizacji stacji meteorologicznych wyznaczenie trwałości zmęczeniowych dla każdego miesiąca.

7. Wyznaczenie rozkładu ruchu w poszczególnych miesiącach roku.

8. Obliczenie trwałości zmęczeniowych dla wybranych okresów czasowych, tzn. w ciągu całego roku lub w ciągu wybranych miesiący uwzględniających sezonowość ruchu i temperatury (lato, wiosna+jesień oraz zima). Przykładowo obliczając temperaturę ekwiwalentną dla całego roku obliczenia wykonywano według następującego wzoru:

$$N_{rok} = \frac{100}{\left(\frac{%ruch1}{N1} + \frac{%ruch2}{N2} + \cdots + \frac{%ruch12}{N12}\right)}$$

gdzie:
- N_{rok} - trwałość zmęczeniowa konstrukcji nawierzchni w okresie całego roku,
- %ruch1 - procentowy udział ruchu w stosunku do całego roku w miesiącu 1 (styczeń),
- %ruch2 - analogicznie, dla miesiąca 2 (luty),
- %ruch12 - analogicznie, dla miesiąca 12 (grudzień),
- N1, N2…N12 - trwałość zmęczeniowa obliczona w odpowiadających miesiącach.

9. Po wyznaczeniu trwałości zmęczeniowej dla każdej kategorii ruchu i dla każdego przedziału czasowego np. N_{sezon} lub N_{rok}, a także korzystając z wcześniej wyznaczonych zależności trwałości zmęczeniowej od temperatury N(T) dla danej konstrukcji nawierzchni obliczono, jakiej ta trwałość odpowiada temperaturze. Wyznaczano w ten sposób wartości temperatur ekwiwalentnych dla danego analizowanego okresu czasu.

5.3.1. Sposób wyboru stacji meteorologicznych

Spośród zestawu dostępnych stacji meteorologicznych wytypowano 21 stacji, które spełniały następujące kryteria:

- jak największa kompletność danych temperaturowych w analizowanym okresie czasu od 1 stycznia 1981 r. do 31 grudnia 2010 r. dla poszczególnych stacji – dłuższe przerwy w pomiarach mogłyby wpłynąć na wynik analizy średnich wartości temperatury dla analizowanego miesiąca w okresie 30 lat,
- równomierność rozmieszczenia stacji na terytorium Polski oraz uwzględnienie przyjętego w obecnym katalogu, zgodnie z obowiązującą normą PN-81/B-03020, podziału na strefy w zależności od głębokości przemarzania gruntu: 0,8 m; 1,0 m; 1,2 oraz 1,4 m.

Dla obszaru Polski objętego głębokością przemarzania 0,8 m, co stanowi 29,5% całego terytorium Polski, przyjęto następujące lokalizacje stacji meteorologicznych:

- Chojnice,
- Koszalin,
- Poznań,
- Szczecin,
- Wrocław,
- Zielona Góra.

Dla obszaru Polski objętego głębokością przemarzania 1,0 m, co stanowi 57,1% całego terytorium Polski, przyjęto następujące lokalizacje stacji meteorologicznych:

- Gdańsk Rębiechowo,
- Kielce Suków,
- Kraków Balice,
- Lublin,
- Łódź,
- Olsztyn.
Dla obszaru Polski objętego głębokością przemarzania 1,2 m, co stanowi około 10,9% całego terytorium Polski, przyjęto następujące lokalizacje stacji meteorologicznych:

- Białystok,
- Kętrzyn,
- Nowy Sącz,
- Przemyśl.

Dla obszaru Polski objętego głębokością przemarzania 1,4 m, co stanowi 2,5% całego terytorium Polski, przyjęto lokalizację stacji meteorologicznej w Suwałkach.

Aby lepiej przedstawić rozmieszczenie wybranych stacji meteorologicznych naniesiono je na mapę z podziałem na strefy w zależności od głębokości przemarzania gruntu w Polsce zamieszczoną w obecnym katalogu – rysunek 5.4.
5.3.2. Zestawienie średnich miesięcznych temperatur powietrza

Sposób wyznaczania średniej miesięcznej temperatury powietrza w ciągu jednego roku przedstawiono już wcześniej w punkcie 5.2.2, w tablicy 5.1 na przykładzie stacji meteorologicznej we Wrocławiu. Wyznaczenie średniej miesięcznej temperatury powietrza w okresie 30 lat przedstawiono w tablicy 5.3 na przykładzie stacji meteorologicznej w Warszawie.

Tablica 5.3. Sposób wyznaczania średniej miesięcznej temperatury powietrza w poszczególnych miesiącach dla stacji meteorologicznej w Warszawie w okresie od stycznia 1981 do grudnia 2010

<table>
<thead>
<tr>
<th>Rok</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>-3,3</td>
<td>-0,9</td>
<td>3,9</td>
<td>6,0</td>
<td>14,1</td>
<td>17,1</td>
<td>18,0</td>
<td>16,6</td>
<td>14,1</td>
<td>8,8</td>
<td>3,4</td>
<td>-3,6</td>
</tr>
<tr>
<td>1982</td>
<td>-3,7</td>
<td>-2,0</td>
<td>3,5</td>
<td>5,6</td>
<td>14,2</td>
<td>15,8</td>
<td>19,3</td>
<td>19,3</td>
<td>15,1</td>
<td>8,7</td>
<td>4,7</td>
<td>1,1</td>
</tr>
<tr>
<td>1983</td>
<td>3,2</td>
<td>-2,6</td>
<td>4,0</td>
<td>9,7</td>
<td>15,6</td>
<td>17,0</td>
<td>19,4</td>
<td>18,5</td>
<td>14,6</td>
<td>8,7</td>
<td>2,1</td>
<td>-0,8</td>
</tr>
<tr>
<td>1984</td>
<td>0,2</td>
<td>-1,7</td>
<td>1,1</td>
<td>9,1</td>
<td>13,7</td>
<td>14,4</td>
<td>15,7</td>
<td>18,0</td>
<td>13,2</td>
<td>10,3</td>
<td>2,1</td>
<td>-1,3</td>
</tr>
<tr>
<td>1985</td>
<td>-8,3</td>
<td>-9,3</td>
<td>2,0</td>
<td>8,3</td>
<td>15,3</td>
<td>14,8</td>
<td>17,4</td>
<td>18,0</td>
<td>12,3</td>
<td>8,1</td>
<td>0,7</td>
<td>1,6</td>
</tr>
<tr>
<td>1986</td>
<td>-1,5</td>
<td>-9,6</td>
<td>1,9</td>
<td>9,0</td>
<td>14,7</td>
<td>16,8</td>
<td>17,8</td>
<td>17,4</td>
<td>11,2</td>
<td>8,1</td>
<td>5,1</td>
<td>-0,2</td>
</tr>
<tr>
<td>1987</td>
<td>-12,4</td>
<td>-0,9</td>
<td>2,2</td>
<td>7,1</td>
<td>12,1</td>
<td>15,9</td>
<td>18,0</td>
<td>15,2</td>
<td>12,8</td>
<td>8,5</td>
<td>3,9</td>
<td>0,8</td>
</tr>
<tr>
<td>1988</td>
<td>0,5</td>
<td>0,7</td>
<td>1,0</td>
<td>7,1</td>
<td>15,6</td>
<td>17,1</td>
<td>19,4</td>
<td>17,3</td>
<td>13,7</td>
<td>7,7</td>
<td>0,1</td>
<td>0,8</td>
</tr>
<tr>
<td>1989</td>
<td>2,0</td>
<td>4,0</td>
<td>5,6</td>
<td>9,1</td>
<td>14,3</td>
<td>15,8</td>
<td>18,7</td>
<td>17,8</td>
<td>14,4</td>
<td>10,4</td>
<td>1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>1990</td>
<td>1,9</td>
<td>4,8</td>
<td>6,6</td>
<td>9,0</td>
<td>14,0</td>
<td>17,1</td>
<td>17,1</td>
<td>17,6</td>
<td>11,2</td>
<td>9,2</td>
<td>4,5</td>
<td>-0,3</td>
</tr>
<tr>
<td>1991</td>
<td>-0,3</td>
<td>-4,1</td>
<td>3,9</td>
<td>7,8</td>
<td>10,8</td>
<td>15,6</td>
<td>19,1</td>
<td>18,2</td>
<td>14,4</td>
<td>7,8</td>
<td>4,1</td>
<td>-1,6</td>
</tr>
<tr>
<td>1992</td>
<td>-1,1</td>
<td>0,8</td>
<td>3,3</td>
<td>7,3</td>
<td>13,7</td>
<td>18,4</td>
<td>20,1</td>
<td>21,5</td>
<td>12,7</td>
<td>5,7</td>
<td>3,6</td>
<td>-0,7</td>
</tr>
<tr>
<td>1993</td>
<td>0,2</td>
<td>-1,5</td>
<td>0,9</td>
<td>9,0</td>
<td>16,4</td>
<td>15,7</td>
<td>16,8</td>
<td>16,6</td>
<td>12,0</td>
<td>7,9</td>
<td>-2,7</td>
<td>2,0</td>
</tr>
<tr>
<td>1994</td>
<td>2,0</td>
<td>-2,5</td>
<td>3,8</td>
<td>9,2</td>
<td>12,5</td>
<td>15,9</td>
<td>22,1</td>
<td>18,4</td>
<td>14,6</td>
<td>6,7</td>
<td>3,6</td>
<td>0,7</td>
</tr>
<tr>
<td>1995</td>
<td>-1,7</td>
<td>3,2</td>
<td>3,0</td>
<td>7,8</td>
<td>12,7</td>
<td>17,4</td>
<td>20,1</td>
<td>18,6</td>
<td>13,4</td>
<td>10,0</td>
<td>-0,1</td>
<td>-5,3</td>
</tr>
<tr>
<td>1996</td>
<td>-5,9</td>
<td>-5,5</td>
<td>-1,5</td>
<td>8,2</td>
<td>15,2</td>
<td>16,7</td>
<td>16,0</td>
<td>18,7</td>
<td>10,6</td>
<td>9,3</td>
<td>6,0</td>
<td>-5,4</td>
</tr>
<tr>
<td>1997</td>
<td>-4,4</td>
<td>1,8</td>
<td>2,8</td>
<td>5,0</td>
<td>13,7</td>
<td>16,7</td>
<td>17,9</td>
<td>19,2</td>
<td>13,0</td>
<td>6,2</td>
<td>2,8</td>
<td>-0,1</td>
</tr>
<tr>
<td>1998</td>
<td>0,3</td>
<td>3,2</td>
<td>1,8</td>
<td>9,8</td>
<td>14,6</td>
<td>17,8</td>
<td>17,7</td>
<td>16,4</td>
<td>13,1</td>
<td>7,8</td>
<td>-1,9</td>
<td>-2,4</td>
</tr>
<tr>
<td>1999</td>
<td>-0,2</td>
<td>-1,3</td>
<td>4,7</td>
<td>9,9</td>
<td>12,6</td>
<td>18,0</td>
<td>20,7</td>
<td>17,9</td>
<td>15,8</td>
<td>8,3</td>
<td>1,6</td>
<td>0,7</td>
</tr>
<tr>
<td>2000</td>
<td>-1,4</td>
<td>2,5</td>
<td>3,3</td>
<td>12,4</td>
<td>15,4</td>
<td>17,8</td>
<td>16,6</td>
<td>18,1</td>
<td>12,0</td>
<td>11,6</td>
<td>5,9</td>
<td>1,4</td>
</tr>
<tr>
<td>2001</td>
<td>-0,5</td>
<td>-0,8</td>
<td>2,2</td>
<td>8,0</td>
<td>14,6</td>
<td>15,2</td>
<td>20,7</td>
<td>19,3</td>
<td>12,1</td>
<td>10,9</td>
<td>2,4</td>
<td>-4,2</td>
</tr>
<tr>
<td>2002</td>
<td>-0,7</td>
<td>3,6</td>
<td>4,5</td>
<td>9,1</td>
<td>17,5</td>
<td>17,6</td>
<td>21,2</td>
<td>20,7</td>
<td>13,7</td>
<td>7,2</td>
<td>4,1</td>
<td>-6,6</td>
</tr>
<tr>
<td>2003</td>
<td>-2,9</td>
<td>-4,9</td>
<td>2,0</td>
<td>7,3</td>
<td>15,8</td>
<td>17,9</td>
<td>20,2</td>
<td>18,8</td>
<td>13,9</td>
<td>5,4</td>
<td>5,0</td>
<td>0,9</td>
</tr>
<tr>
<td>2004</td>
<td>-5,0</td>
<td>0,0</td>
<td>3,6</td>
<td>8,8</td>
<td>12,0</td>
<td>15,8</td>
<td>17,9</td>
<td>19,1</td>
<td>13,6</td>
<td>10,1</td>
<td>3,8</td>
<td>1,8</td>
</tr>
<tr>
<td>2005</td>
<td>1,0</td>
<td>-3,1</td>
<td>0,0</td>
<td>9,1</td>
<td>13,6</td>
<td>16,0</td>
<td>20,6</td>
<td>17,7</td>
<td>15,9</td>
<td>9,4</td>
<td>3,3</td>
<td>-0,3</td>
</tr>
<tr>
<td>2006</td>
<td>-8,2</td>
<td>-3,1</td>
<td>-0,6</td>
<td>9,1</td>
<td>14,2</td>
<td>18,3</td>
<td>23,6</td>
<td>17,9</td>
<td>16,0</td>
<td>10,7</td>
<td>5,9</td>
<td>4,0</td>
</tr>
<tr>
<td>2007</td>
<td>3,8</td>
<td>-1,0</td>
<td>7,2</td>
<td>9,7</td>
<td>15,8</td>
<td>19,0</td>
<td>18,9</td>
<td>19,1</td>
<td>13,4</td>
<td>8,3</td>
<td>1,9</td>
<td>0,3</td>
</tr>
<tr>
<td>2008</td>
<td>1,1</td>
<td>3,2</td>
<td>3,8</td>
<td>9,5</td>
<td>13,9</td>
<td>18,9</td>
<td>19,5</td>
<td>18,7</td>
<td>12,9</td>
<td>10,1</td>
<td>5,3</td>
<td>1,3</td>
</tr>
<tr>
<td>2009</td>
<td>-2,8</td>
<td>-0,6</td>
<td>2,8</td>
<td>11,2</td>
<td>13,6</td>
<td>16,2</td>
<td>20,0</td>
<td>18,5</td>
<td>15,3</td>
<td>6,7</td>
<td>5,6</td>
<td>-1,1</td>
</tr>
<tr>
<td>2010</td>
<td>-8,1</td>
<td>-1,8</td>
<td>3,9</td>
<td>9,4</td>
<td>13,6</td>
<td>17,8</td>
<td>21,9</td>
<td>19,7</td>
<td>12,3</td>
<td>6,1</td>
<td>5,7</td>
<td>-5,4</td>
</tr>
</tbody>
</table>

Średnia w miesiącu:
-1,9 -1,0 2,8 8,6 14,2 16,8 19,1 18,3 13,4 8,5 3,1 -0,7

194
Zestawienie średnich temperatur powietrza w poszczególnych miesiącach roku dla wszystkich analizowanych stacji meteorologicznych i dla okresu 30 lat (od stycznia 1981 r. do grudnia 2010 r.) przedstawiono w tablicy 5.4.

Tablica 5.4. Zestawienie średnich miesięcznych temperatur powietrza w poszczególnych stacjach meteorologicznych w analizowanym okresie 30 lat

<table>
<thead>
<tr>
<th>Stacja meteorologiczna</th>
<th>Miesiąc, [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Chojnice</td>
<td>-1,9</td>
</tr>
<tr>
<td>Koszalin</td>
<td>-0,4</td>
</tr>
<tr>
<td>Poznań</td>
<td>-0,9</td>
</tr>
<tr>
<td>Szczecin</td>
<td>0,0</td>
</tr>
<tr>
<td>Wrocław</td>
<td>-0,7</td>
</tr>
<tr>
<td>Zielona Góra</td>
<td>-0,7</td>
</tr>
<tr>
<td>Gdańsk</td>
<td>-1,6</td>
</tr>
<tr>
<td>Kielce</td>
<td>-2,7</td>
</tr>
<tr>
<td>Kraków</td>
<td>-2,3</td>
</tr>
<tr>
<td>Lublin</td>
<td>-2,9</td>
</tr>
<tr>
<td>Łódź</td>
<td>-1,8</td>
</tr>
<tr>
<td>Olsztyn</td>
<td>-2,2</td>
</tr>
<tr>
<td>Opole</td>
<td>-1,0</td>
</tr>
<tr>
<td>Toruń</td>
<td>-1,4</td>
</tr>
<tr>
<td>Warszawa</td>
<td>-1,9</td>
</tr>
<tr>
<td>Zamość</td>
<td>-3,0</td>
</tr>
<tr>
<td>Białystok</td>
<td>-3,1</td>
</tr>
<tr>
<td>Kętrzyn</td>
<td>-2,4</td>
</tr>
<tr>
<td>Nowy Sącz</td>
<td>-1,8</td>
</tr>
<tr>
<td>Przemyśl</td>
<td>-2,3</td>
</tr>
<tr>
<td>Suwałki</td>
<td>-3,5</td>
</tr>
</tbody>
</table>

5.3.3. Wyznaczenie średnich miesięcznych temperatur warstw asfaltowych

gdzie:

\[
MMPT = MMAT \left[1 + \frac{1}{z + 4} \right] - \left[\frac{34}{z + 4} \right] + 6
\]

MMPT - średnia miesięczna temperatura nawierzchni (ang.: Mean Monthly Pavement Temperature), (°F),

MMAT - średnia miesięczna temperatura powietrza (ang.: Mean Monthly Air Temperature), (°F),

z - głębokość od powierzchni nawierzchni, (cale).

Zgodnie z założeniami wynikającymi z metody Instytutu Asfaltowego głębokość „z” należy przyjmować, jako równą 1/3 grubości warstw asfaltowych, liczoną od powierzchni nawierzchni. Wyznaczona temperatura jest reprezentatywna dla całej grubości warstw asfaltowych.

W tablicach 5.5 i 5.6 przedstawiono przykładowe obliczone miesięczne temperatury warstw asfaltowych o grubości 8 cm (jak przy kategorii ruchu KR1 w nawierzchni podatnej) oraz o grubości 31 cm (jak przy kategorii ruchu KR6 w nawierzchni podatnej).

Tablica 5.5. Zestawienie średnich miesięcznych temperatur warstw asfaltowych o grubości 8 cm w poszczególnych stacjach meteorologicznych w okresie 30 lat

<table>
<thead>
<tr>
<th>Stacja meteorologiczna</th>
<th>Miesiąc, [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Chojnice</td>
<td>0.9</td>
</tr>
<tr>
<td>Koszalin</td>
<td>2.6</td>
</tr>
<tr>
<td>Poznań</td>
<td>2.1</td>
</tr>
<tr>
<td>Szczecin</td>
<td>3.1</td>
</tr>
<tr>
<td>Wrocław</td>
<td>2.4</td>
</tr>
<tr>
<td>Zielona Góra</td>
<td>2.3</td>
</tr>
<tr>
<td>Gdańsk</td>
<td>1.2</td>
</tr>
<tr>
<td>Kielce</td>
<td>-0.1</td>
</tr>
<tr>
<td>Kraków</td>
<td>0.4</td>
</tr>
<tr>
<td>Lublin</td>
<td>-0.3</td>
</tr>
<tr>
<td>Łódź</td>
<td>0.9</td>
</tr>
<tr>
<td>Olsztyn</td>
<td>0.5</td>
</tr>
<tr>
<td>Opole</td>
<td>1.9</td>
</tr>
<tr>
<td>Toruń</td>
<td>1.4</td>
</tr>
<tr>
<td>Warszawa</td>
<td>0.9</td>
</tr>
<tr>
<td>Zamość</td>
<td>-0.5</td>
</tr>
<tr>
<td>Białystok</td>
<td>-0.6</td>
</tr>
<tr>
<td>Kętrzyn</td>
<td>0.2</td>
</tr>
<tr>
<td>Nowy Sącz</td>
<td>0.9</td>
</tr>
<tr>
<td>Przemyśl</td>
<td>0.4</td>
</tr>
<tr>
<td>Suwałki</td>
<td>-1.1</td>
</tr>
</tbody>
</table>
Tablica 5.6. Zestawienie średnich miesięcznych temperatur warstw asfaltowych o grubości 31 cm w poszczególnych stacjach meteorologicznych w okresie 30 lat

<table>
<thead>
<tr>
<th>Stacja meteorologiczna</th>
<th>Miesiąc, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Chojnice</td>
<td>1,1</td>
</tr>
<tr>
<td>Koszalin</td>
<td>2,7</td>
</tr>
<tr>
<td>Poznań</td>
<td>2,2</td>
</tr>
<tr>
<td>Szczecin</td>
<td>3,2</td>
</tr>
<tr>
<td>Wrocław</td>
<td>2,5</td>
</tr>
<tr>
<td>Zielona Góra</td>
<td>2,4</td>
</tr>
<tr>
<td>Gdańsk</td>
<td>1,4</td>
</tr>
<tr>
<td>Kielce</td>
<td>0,2</td>
</tr>
<tr>
<td>Kraków</td>
<td>0,6</td>
</tr>
<tr>
<td>Lublin</td>
<td>0,0</td>
</tr>
<tr>
<td>Łódź</td>
<td>1,2</td>
</tr>
<tr>
<td>Olsztyn</td>
<td>0,7</td>
</tr>
<tr>
<td>Opole</td>
<td>2,0</td>
</tr>
<tr>
<td>Toruń</td>
<td>1,6</td>
</tr>
<tr>
<td>Warszawa</td>
<td>1,1</td>
</tr>
<tr>
<td>Zamość</td>
<td>-0,2</td>
</tr>
<tr>
<td>Biały Stok</td>
<td>-0,3</td>
</tr>
<tr>
<td>Kętrzyn</td>
<td>0,5</td>
</tr>
<tr>
<td>Nowy Sącz</td>
<td>1,2</td>
</tr>
<tr>
<td>Przemyśl</td>
<td>0,6</td>
</tr>
<tr>
<td>Suwałki</td>
<td>-0,7</td>
</tr>
</tbody>
</table>

5.3.4. Określenie trwałości zmęczeniowej konstrukcji nawierzchni

Trwałość zmęczeniową konstrukcji nawierzchni obliczano według następujących założeń:

- przyjęto do obliczeń 2 typy konstrukcji:
 - nawierzchnia podatna z podbudową z kruszywa łamanego,
 - nawierzchnia półsztywna z podbudową związaną spojwem hydraulicznym,
- przyjęto grubości konstrukcji nawierzchni według obecnego katalogu dla kategorii ruchu od KR1 do KR6,
- zakres temperatur od -20°C do +30°C z krokiem obliczeniowym co 5°C,
- dla konstrukcji podatnych zastosowano kryteria zmęczeniowe Instytutu Asfaltowego, natomiast dla konstrukcji półsztywnych kryteria zmęczeniowe warstw związanych spojwem hydrauliczny Uniwersytetu w Illinois. Zastosowane kryteria zmęczeniowe zostały szczegółowo opisane w innej części opracowania, w rozdziale 3.
przyjęto obciążenie obliczeniowe osią standardową: 100 kN (nacisk koła pojedynczego 50 kN), ciśnienie kontaktowe: 700 kPa oraz czas obciążenia nawierzchni przy prędkości pojazdu \(V = 60 \text{ km/h} \): 0,02 s.

W tablicach 5.7 i 5.8 przedstawiono zestawienie grubości poszczególnych warstw przyjętych konstrukcji nawierzchni podatnej i półsztywnej, które następnie przyjęto do obliczeń trwałości zmęczeniowych.

Tablica 5.7. Zestawienie grubości poszczególnych warstw konstrukcji nawierzchni podatnej

<table>
<thead>
<tr>
<th>Rodzaj warstwy</th>
<th>Grubość warstw dla kategorii ruchu:</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-wa ścieralna AC</td>
<td>4</td>
</tr>
<tr>
<td>W-wa wiążąca AC</td>
<td>4</td>
</tr>
<tr>
<td>Podbudowa AC</td>
<td>-</td>
</tr>
<tr>
<td>Podbudowa KLSM</td>
<td>20</td>
</tr>
<tr>
<td>Łączna grubość warstw asfaltowych</td>
<td>8</td>
</tr>
</tbody>
</table>

Tablica 5.8. Zestawienie grubości poszczególnych warstw konstrukcji nawierzchni półsztywnej

<table>
<thead>
<tr>
<th>Rodzaj warstwy</th>
<th>Grubość warstw dla kategorii ruchu:</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-wa ścieralna AC</td>
<td>4</td>
</tr>
<tr>
<td>W-wa wiążąca AC</td>
<td>6</td>
</tr>
<tr>
<td>Podbudowa AC</td>
<td>-</td>
</tr>
<tr>
<td>Podbudowa – kruszywo stabilizowane cementem</td>
<td>16</td>
</tr>
<tr>
<td>Łączna grubość warstw asfaltowych</td>
<td>10</td>
</tr>
</tbody>
</table>

W tablicy 5.9 przedstawiono przyjęte parametry fizyczne mieszanek mineralno-asfaltowych, które zostały wykorzystane do obliczeń modułów sztywności oraz trwałości zmęczeniowych.
Tablica 5.9. Zestawienie parametrów fizycznych mieszanek mineralno-asfaltowych przyjętych do obliczeń

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rodzaj mieszanki</th>
<th>Kategoria ruchu</th>
<th>Zawartość asfaltu [% m/m]</th>
<th>Zawartość wolnych przestrzeni [% v/v]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beton asfaltowy do warstwy ścieralnej</td>
<td>KR1-2, KR3-6</td>
<td>5,6</td>
<td>3,0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>5,4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beton asfaltowy do warstwy wiążącej</td>
<td>KR1-2, KR3-6</td>
<td>4,4</td>
<td>6,0</td>
</tr>
<tr>
<td>4</td>
<td>Beton asfaltowy do warstwy podbudowy</td>
<td>KR1-2, KR3-6</td>
<td>4,0</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,8</td>
<td></td>
</tr>
</tbody>
</table>

W tablicy 5.10 przedstawiono parametry asfaltów przyjęte do obliczeń modułów sztywności asfaltów i mieszanek mineralno-asfaltowych w zakresie temperatury od -20°C do +30°C. Moduły sztywności obliczono według metody Shella.

Tablica 5.10. Parametry asfaltów przyjęte do obliczeń modułów sztywności asfaltów

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Wyszczególnienie</th>
<th>35/50</th>
<th>50/70</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pen25 po RTFOT</td>
<td>30,0</td>
<td>42,0</td>
</tr>
<tr>
<td>2.</td>
<td>PiK po RTFOT</td>
<td>60,0</td>
<td>55,0</td>
</tr>
</tbody>
</table>

Obliczone wartości modułów sztywności asfaltów oraz modułów sztywności mieszanek mineralno-asfaltowych w zakresie temperatury od -20°C do +30°C przedstawiono w tablicy 5.11.

Tablica 5.11. Obliczone wartości modułów sztywności asfaltów i mieszanek mineralno-asfaltowych

<table>
<thead>
<tr>
<th>Temperatura [°C]</th>
<th>Moduł sztywności asfaltu, MPa</th>
<th>Moduł sztywności mieszanki mineralno-asfaltowej dla określonej kategorii ruchu i rodzaju asfaltu, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35/50</td>
<td>50/70</td>
</tr>
<tr>
<td>-20</td>
<td>1630</td>
<td>1620</td>
</tr>
<tr>
<td>-15</td>
<td>1310</td>
<td>1280</td>
</tr>
<tr>
<td>-10</td>
<td>1020</td>
<td>965</td>
</tr>
<tr>
<td>-5</td>
<td>733</td>
<td>701</td>
</tr>
<tr>
<td>0</td>
<td>501</td>
<td>457</td>
</tr>
<tr>
<td>+5</td>
<td>310</td>
<td>285</td>
</tr>
<tr>
<td>+10</td>
<td>190</td>
<td>169</td>
</tr>
<tr>
<td>+15</td>
<td>116</td>
<td>89,9</td>
</tr>
<tr>
<td>+20</td>
<td>64,8</td>
<td>44,8</td>
</tr>
<tr>
<td>+25</td>
<td>33,3</td>
<td>20,7</td>
</tr>
<tr>
<td>+30</td>
<td>15,8</td>
<td>9,16</td>
</tr>
</tbody>
</table>
W obliczeniach nawierzchni podatnej dla podbudowy z kruszywa łamanej stabilizowanego mechanicznie przyjęto moduł sprężystości równy 400 MPa oraz współczynnik Poissona równy 0,3.

W obliczeniach nawierzchni półsztywnej dla podbudowy z kruszywa stabilizowanej spoiwem hydraulicznym o wytrzymałości na ściskanie od 2,5 do 5,0 MPa przyjęto 2 etapy pracy nawierzchni. W zależności od etapu pracy przyjęto następujące wartości stałych materiałowych:

- moduł sprężystości przed wystąpieniem spękań (I etap pracy nawierzchni), $E_I = 4500$ MPa, współczynnik Poissona $\nu = 0,25$,
- moduł sprężystości po wystąpieniu spękań (II etap pracy nawierzchni), $E_{II} = 300$ MPa, współczynnik Poissona $\nu = 0,3$.

Dla podłoża pod konstrukcją nawierzchni przyjęto następujące parametry moduł sprężystości $E=100$ MPa, współczynnik Poissona $\nu = 0,3$.

Na rysunkach od 5.5 do 5.16 przedstawiono obliczone trwałości zmęczeniowe dla zakresu temperatur od -20°C do +30°C.

Rysunek 5.5. Wyznaczona trwałość zmęczeniowa dla nawierzchni podatnej, KR1

Rysunek 5.6. Wyznaczona trwałość zmęczeniowa dla nawierzchni podatnej, KR2
Rysunek 5.7. Wyznaczona trwałość zmęczeniowa dla nawierzchni podatnej, KR3

Rysunek 5.8. Wyznaczona trwałość zmęczeniowa dla nawierzchni podatnej, KR4

Rysunek 5.9. Wyznaczona trwałość zmęczeniowa dla nawierzchni podatnej, KR5
Rysunek 5.10. Wyznaczona trwałość zmęczeniowa dla nawierzchni podatnej, KR6

\[y = 0,2394x^6 - 6,7275x^5 - 225,5761x^4 + 6737,0885x^3 + 93\,700,6627x^2 - 5\,819\,770,9826x + 86\,824\,189,0423 \]
\[R^2 = 0,9997 \]

Rysunek 5.11. Wyznaczona trwałość zmęczeniowa dla nawierzchni półsztywnej, KR1

\[y = 0,0006x^6 - 0,0122x^5 - 0,9297x^4 + 18,0747x^3 + 621,3467x^2 - 25\,000,9260x + 209\,481,0446 \]
\[R^2 = 0,9998 \]

Rysunek 5.12. Wyznaczona trwałość zmęczeniowa dla nawierzchni półsztywnej, KR2

\[y = 0,0043x^6 - 0,2206x^5 - 2,0843x^4 + 244,2228x^3 + 838,3432x^2 - 209\,267,6356x + 2\,925\,668,9656 \]
\[R^2 = 0,9999 \]
Rysunek 5.13. Wyznaczona trwałość zmęczeniowa dla nawierzchni półsztywnej, KR3

$$y = 0,0165x^6 - 0,2625x^5 - 24,3614x^4 + 380,4979x^3 + 15901,3004x^2 - 575556,0523x + 7342402,2378$$
$$R^2 = 0,9998$$

Rysunek 5.14. Wyznaczona trwałość zmęczeniowa dla nawierzchni półsztywnej, KR4

$$y = 0,2167x^6 - 4,3210x^5 - 281,0008x^4 + 4480,4847x^3 + 184406,0181x^2 - 5171593,2125x + 44491586,1304$$
$$R^2 = 0,9997$$

Rysunek 5.15. Wyznaczona trwałość zmęczeniowa dla nawierzchni półsztywnej, KR5

$$y = 0,9960x^6 - 17,9466x^5 - 1473,0890x^4 + 24470,3525x^3 + 958902,9730x^2 - 28783968,2417x + 247505308,7149$$
$$R^2 = 0,9997$$
Rysunek 5.16. Wyznaczona trwałość zmęczeniowa dla nawierzchni półsztywnej, KR6

5.3.5. Wyznaczenie trwałości zmęczeniowych w poszczególnych miesiącach

Kolejnym krokiem zmierzającym do określania temperatury ekwiwalentnej było wyznaczenie trwałości zmęczeniowych w średnich miesięcznych temperaturach warstw asfaltowych charakterystycznych dla poszczególnych lokalizacji stacji meteorologicznych. W tym celu dla każdej wyznaczonej zależności N(T) przedstawionej w poprzednim punkcie na rysunkach 5.5 – 5.16 obliczono z linii trendu trwałość zmęczeniową w okresie miesięcznym dla odpowiadającej mu średniej temperatury. Przykład obliczonych trwałości zmęczeniowych w poszczególnych miesiącach dla stacji meteorologicznej w Warszawie przedstawiono w tablicach 5.12 oraz 5.13.

Tablica 5.12. Wyznaczone wartości trwałości zmęczeniowych dla średnich miesięcznych temperatur warstw asfaltowych – przykład dla lokализacji w Warszawie, nawierzchnia podatna

<table>
<thead>
<tr>
<th>Miesiąc</th>
<th>Trwałość zmęczeniowa w osiach 100 kN/pas dla kategorii ruchu:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Styczeń</td>
<td>153 228</td>
</tr>
<tr>
<td>Luty</td>
<td>142 883</td>
</tr>
<tr>
<td>Marzec</td>
<td>105 085</td>
</tr>
<tr>
<td>Kwiecień</td>
<td>64 225</td>
</tr>
<tr>
<td>Maj</td>
<td>36 729</td>
</tr>
<tr>
<td>Czerwiec</td>
<td>25 321</td>
</tr>
<tr>
<td>Lipiec</td>
<td>17 259</td>
</tr>
<tr>
<td>Sierpień</td>
<td>19 724</td>
</tr>
<tr>
<td>Wrzesień</td>
<td>40 157</td>
</tr>
<tr>
<td>Październik</td>
<td>64 785</td>
</tr>
<tr>
<td>Listopad</td>
<td>101 903</td>
</tr>
<tr>
<td>Grudzień</td>
<td>139 527</td>
</tr>
</tbody>
</table>
Tablica 5.13. Wyznaczone wartości trwałości zmęczeniowych dla średnich miesięcznych temperatur warstw asfaltowych – przykład dla lokalizacji w Warszawie, nawierzchnia półszyta

<table>
<thead>
<tr>
<th>Miesiąc</th>
<th>Trwałość zmęczeniowa w osiach 100 kN/pas dla kategorii ruchu:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Styczeń</td>
<td>268 689</td>
</tr>
<tr>
<td>Luty</td>
<td>244 161</td>
</tr>
<tr>
<td>Marzec</td>
<td>158 951</td>
</tr>
<tr>
<td>Kwiecień</td>
<td>79 616</td>
</tr>
<tr>
<td>Maj</td>
<td>37 225</td>
</tr>
<tr>
<td>Czerwiec</td>
<td>20 452</td>
</tr>
<tr>
<td>Lipiec</td>
<td>8 621</td>
</tr>
<tr>
<td>Sierpień</td>
<td>12 187</td>
</tr>
<tr>
<td>Wrzesień</td>
<td>42 423</td>
</tr>
<tr>
<td>Październik</td>
<td>80 565</td>
</tr>
<tr>
<td>Listopad</td>
<td>152 179</td>
</tr>
<tr>
<td>Grudzień</td>
<td>236 301</td>
</tr>
</tbody>
</table>

W podobny sposób, jak przedstawiony w tablicach 5.12 i 5.13, wyznaczono trwałości zmęczeniowe dla pozostałych 20 lokalizacji stacji meteorologicznych.

5.3.6. Ocena rozkładu ruchu drogowego w ciągu roku

W celu oceny rozkładu ruchu drogowego w ciągu roku wykorzystano dane zgromadzone ze stacji ważenia pojazdów w ruchu zlokalizowanych w ciągu dróg krajowych nr 4 w miejscowości Wola Dębińska oraz nr 11 w miejscowości Gołkowice koło Byczyny. Wybór tych dwóch lokalizacji podyktowany był dostępnością danych obejmujących okres całego roku - od lipca 2010r do czerwca 2011r. Dane te następnie porównano z rozkładem ruchu obowiązującym w obecnym katalogu z 1997r. Były one również szczegółowo analizowane w innej części niniejszego opracowania w rozdziale 2 w ramach prac nad wyznaczeniem współczynników równoważności osi. Do analizy temperatury ekwiwalentnej wykorzystano roczne zmiany ruchu wyrażone za pomocą średniej dobowej liczby przejazdów osi równoważnych 100 kN/pas w poszczególnych miesiącach w roku. Na tej podstawie wyznaczono procentowy rozkład ruchu w poszczególnych sezonach w roku. Procentowy rozkład ruchu w poszczególnych miesiącach dla analizowanych stacji przedstawiono w tablicy 5.14.

Wyznaczony procentowy rozkład ruchu w poszczególnych porach roku, tzn. w okresie lata, wiosny i jesieni, a także w okresie zimy przedstawiono w tablicy 5.15. Dla porównania podano również rozkład ruchu w poszczególnych sezonach w roku obowiązujący w katalogu z roku 1997.
Tablica 5.1. Procentowy rozkład ruchu w poszczególnych miesiącach

<table>
<thead>
<tr>
<th>Miesiąc</th>
<th>Wola Dębińska</th>
<th>Byczyna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Styczeń</td>
<td>6,4</td>
<td>3,7</td>
</tr>
<tr>
<td>Luty</td>
<td>7,3</td>
<td>6,2</td>
</tr>
<tr>
<td>Marzec</td>
<td>6,6</td>
<td>8,6</td>
</tr>
<tr>
<td>Kwiecień</td>
<td>8,2</td>
<td>9,4</td>
</tr>
<tr>
<td>Maj</td>
<td>10,0</td>
<td>9,5</td>
</tr>
<tr>
<td>Czerwiec</td>
<td>8,9</td>
<td>10,5</td>
</tr>
<tr>
<td>Lipiec</td>
<td>9,1</td>
<td>10,0</td>
</tr>
<tr>
<td>Sierpień</td>
<td>8,0</td>
<td>8,9</td>
</tr>
<tr>
<td>Wrzesień</td>
<td>11,4</td>
<td>10,4</td>
</tr>
<tr>
<td>Październik</td>
<td>9,1</td>
<td>9,5</td>
</tr>
<tr>
<td>Listopad</td>
<td>8,4</td>
<td>8,9</td>
</tr>
<tr>
<td>Grudzień</td>
<td>6,6</td>
<td>4,4</td>
</tr>
</tbody>
</table>

Tablica 5.15. Procentowy rozkład ruchu w poszczególnych sezonach w roku

<table>
<thead>
<tr>
<th>Rozkład ruchu według:</th>
<th>Rozkład ruchu w roku, [%]:</th>
<th>Rozkład ruchu w roku, [%]:</th>
<th>Rozkład ruchu w roku, [%]:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lato (czerwiec - sierpień)</td>
<td>wiosna (marzec - maj) oraz</td>
<td>zima (grudzień - luty)</td>
</tr>
<tr>
<td></td>
<td>26,0</td>
<td>53,7</td>
<td>20,3</td>
</tr>
<tr>
<td>Wola Dębińska</td>
<td>26,0</td>
<td>53,7</td>
<td>20,3</td>
</tr>
<tr>
<td>Byczyna</td>
<td>29,4</td>
<td>56,3</td>
<td>14,3</td>
</tr>
<tr>
<td>Katalog z 1997 r.</td>
<td>30,0</td>
<td>50,0</td>
<td>20,0</td>
</tr>
</tbody>
</table>

5.3.7. Obliczenie trwałości zmęczeniowych dla całego roku oraz w poszczególnych sezonach

W celu obliczenia trwałości konstrukcji nawierzchni w całym roku oraz w poszczególnych sezonach uwzględniono rozkład ruchu przedstawiony wcześniej w punkcie 5.3.6. Przykładowe obliczenia trwałości zmęczeniowych dla nawierzchni podatnej i dla lokalizacji stacji meteorologicznej w Warszawie przedstawiono w tablicach od 5.16 do 5.19.

Tablica 5.16. Obliczenia trwałości zmęczeniowej w okresie całego roku uwzględniające zmienny rozkład ruchu – stacja meteorologiczna w Warszawie

<table>
<thead>
<tr>
<th>Rozkład ruchu według:</th>
<th>Trwałość zmęczeniowa obejmująca okres całego roku w osiach 100 kN/pas dla kategorii ruchu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wola Dębińska</td>
<td>41 689</td>
</tr>
<tr>
<td>Byczyna</td>
<td>39 616</td>
</tr>
<tr>
<td>Katalog 97'</td>
<td>40 442</td>
</tr>
</tbody>
</table>
Tablica 5.17. Przykładowe obliczenia trwałości zmęczeniowej w okresie miesięcy letnich uwzględniające zmienny rozkład ruchu – stacja meteorologiczna w Warszawie

<table>
<thead>
<tr>
<th>Rozkład ruchu według:</th>
<th>Kr1</th>
<th>Kr2</th>
<th>Kr3</th>
<th>Kr4</th>
<th>Kr5</th>
<th>Kr6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wola Dębińska</td>
<td>20 259</td>
<td>81 400</td>
<td>976 828</td>
<td>2 626 459</td>
<td>6 053 743</td>
<td>12 285 674</td>
</tr>
<tr>
<td>Byczyna</td>
<td>20 342</td>
<td>82 002</td>
<td>980 034</td>
<td>2 636 233</td>
<td>6 077 624</td>
<td>12 335 365</td>
</tr>
<tr>
<td>Katalog 97’</td>
<td>20 252</td>
<td>81 475</td>
<td>976 559</td>
<td>2 625 987</td>
<td>6 053 075</td>
<td>12 284 836</td>
</tr>
</tbody>
</table>

Tablica 5.18. Przykładowe obliczenia trwałości zmęczeniowej w okresie wiosny i jesieni uwzględniające zmienny rozkład ruchu – stacja meteorologiczna w Warszawie

<table>
<thead>
<tr>
<th>Rozkład ruchu według:</th>
<th>Kr1</th>
<th>Kr2</th>
<th>Kr3</th>
<th>Kr4</th>
<th>Kr5</th>
<th>Kr6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wola Dębińska</td>
<td>55 388</td>
<td>361 296</td>
<td>2 178 591</td>
<td>6 299 515</td>
<td>14 976 316</td>
<td>30 732 411</td>
</tr>
<tr>
<td>Byczyna</td>
<td>57 460</td>
<td>378 364</td>
<td>2 244 624</td>
<td>6 505 298</td>
<td>15 477 495</td>
<td>31 770 387</td>
</tr>
<tr>
<td>Katalog 97’</td>
<td>58 581</td>
<td>387 518</td>
<td>2 280 916</td>
<td>6 618 269</td>
<td>15 752 532</td>
<td>32 340 653</td>
</tr>
</tbody>
</table>

Tablica 5.19. Przykładowe obliczenia trwałości zmęczeniowej w okresie miesięcy zimowych uwzględniające zmienny rozkład ruchu – stacja meteorologiczna w Warszawie

<table>
<thead>
<tr>
<th>Rozkład ruchu według:</th>
<th>Kr1</th>
<th>Kr2</th>
<th>Kr3</th>
<th>Kr4</th>
<th>Kr5</th>
<th>Kr6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wola Dębińska</td>
<td>144 824</td>
<td>1 303 188</td>
<td>4 844 452</td>
<td>15 013 870</td>
<td>36 585 867</td>
<td>76 171 434</td>
</tr>
<tr>
<td>Byczyna</td>
<td>144 336</td>
<td>1 297 511</td>
<td>4 829 627</td>
<td>14 964 954</td>
<td>36 463 851</td>
<td>75 912 903</td>
</tr>
<tr>
<td>Katalog 97’</td>
<td>146 448</td>
<td>1 318 232</td>
<td>4 898 300</td>
<td>15 181 736</td>
<td>36 995 855</td>
<td>77 026 509</td>
</tr>
</tbody>
</table>

W podobny sposób, jak przedstawiony w tablicach 5.16 - 5.19 wyznaczono trwałości zmęczeniowe dla całego roku oraz poszczególnych sezonów dla pozostałych 20 lokalizacji stacji meteorologicznych.

5.3.8. Wyznaczanie temperatury ekwiwalentnej

Na podstawie wyznaczonych w punkcie 5.3.7 trwałości zmęczeniowych dla przyjętych sezonów w roku uwzględniających zmienną temperaturę i ruchu, a także korzystając z wyznaczonych w punkcie 5.3.4 zależności trwałości zmęczeniowej od temperatury N(T) dla danej konstrukcji Nawierzchni obliczano, jakiej ta trwałość odpowiada pojedynczej temperaturze. Wyznaczano w ten sposób temperatury ekwiwalentne dla każdego analizowanego okresu czasu.
W tablicach od 5.20 do 5.23 przedstawiono przykładowe wyznaczone wartości temperatur ekwiwalentnych dla nawierzchni podatnej i lokalizacji stacji meteorologicznej w Warszawie.

<table>
<thead>
<tr>
<th>Tablica 5.20. Przykładowe obliczenia temperatury ekwiwalentnej w okresie całego roku dla nawierzchni podatnej – stacja meteorologiczna w Warszawie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozkład ruchu według:</td>
</tr>
<tr>
<td>Wola Dębińska</td>
</tr>
<tr>
<td>Byczyna</td>
</tr>
<tr>
<td>Katalog 97’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tablica 5.21. Przykładowe obliczenia temperatury ekwiwalentnej w okresie lata dla nawierzchni podatnej – stacja meteorologiczna w Warszawie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozkład ruchu według:</td>
</tr>
<tr>
<td>Wola Dębińska</td>
</tr>
<tr>
<td>Byczyna</td>
</tr>
<tr>
<td>Katalog 97’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tablica 5.22. Przykładowe obliczenia temperatury ekwiwalentnej w okresie wiosny i jesieni dla nawierzchni podatnej – stacja meteorologiczna w Warszawie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozkład ruchu według:</td>
</tr>
<tr>
<td>Wola Dębińska</td>
</tr>
<tr>
<td>Byczyna</td>
</tr>
<tr>
<td>Katalog 97’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tablica 5.23. Przykładowe obliczenia temperatury ekwiwalentnej w okresie zimy dla nawierzchni podatnej – stacja meteorologiczna w Warszawie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozkład ruchu według:</td>
</tr>
<tr>
<td>Wola Dębińska</td>
</tr>
<tr>
<td>Byczyna</td>
</tr>
<tr>
<td>Katalog 97’</td>
</tr>
</tbody>
</table>

W tablicach od 5.24 do 5.27 przedstawiono przykładowe wyznaczone wartości temperatur ekwiwalentnych dla nawierzchni półsztywnej i lokalizacji stacji meteorologicznej w Warszawie.
Tablica 5.24. Przykładowe obliczenia temperatury ekwiwalentnej w okresie całego roku dla nawierzchni półsztywnej – stacja meteorologiczna w Warszawie

<table>
<thead>
<tr>
<th>Rozkład ruchu według:</th>
<th>Temperatura ekwiwalentna, [°C] – okres całego roku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wola Dębińska</td>
<td>20,9</td>
</tr>
<tr>
<td>Byczyna</td>
<td>21,3</td>
</tr>
<tr>
<td>Katalog 97'</td>
<td>21,2</td>
</tr>
</tbody>
</table>

Tablica 5.25. Przykładowe obliczenia temperatury ekwiwalentnej w okresie lata dla nawierzchni półsztywnej – stacja meteorologiczna w Warszawie

<table>
<thead>
<tr>
<th>Rozkład ruchu według:</th>
<th>Temperatura ekwiwalentna, [°C] – okres lata (3 miesiące)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wola Dębińska</td>
<td>24,9</td>
</tr>
<tr>
<td>Byczyna</td>
<td>24,9</td>
</tr>
<tr>
<td>Katalog 97'</td>
<td>24,9</td>
</tr>
</tbody>
</table>

Tablica 5.26. Przykładowe obliczenia temperatury ekwiwalentnej w okresie wiosny i jesieni dla nawierzchni półsztywnej – stacja meteorologiczna w Warszawie

<table>
<thead>
<tr>
<th>Rozkład ruchu według:</th>
<th>Temperatura ekwiwalentna, [°C] – okres wiosny i jesieni (6 miesięcy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wola Dębińska</td>
<td>15,6</td>
</tr>
<tr>
<td>Byczyna</td>
<td>15,2</td>
</tr>
<tr>
<td>Katalog 97'</td>
<td>14,8</td>
</tr>
</tbody>
</table>

Tablica 5.27. Przykładowe obliczenia temperatury ekwiwalentnej w okresie zimy dla nawierzchni półsztywnej – stacja meteorologiczna w Warszawie

<table>
<thead>
<tr>
<th>Rozkład ruchu według:</th>
<th>Temperatura ekwiwalentna, [°C] – okres zimy (3 miesiące)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wola Dębińska</td>
<td>1,8</td>
</tr>
<tr>
<td>Byczyna</td>
<td>1,8</td>
</tr>
<tr>
<td>Katalog 97'</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Ze względu na uzyskanie zbliżonych wartości temperatur ekwiwalentnych dla 3 analizowanych rozkładów ruchu (dla Woli Dębińskiej, Byczyny oraz wg. katalogu z roku 1997) w poszczególnych porach w roku do dalszych analiz przyjęto następujący rozkład ruchu:

- okres lata (3 miesiące): 30%,
- okres wiosny i jesieni (6 miesięcy): 50%,
- okres zimy (3 miesiące): 20%.
Jest to rozkład zgodny z dotychczas stosowanym rozkładem ruchu w obecnym katalogu.

5.4. Zestawienie obliczonych temperatur ekwiwalentnych dla nawierzchni podatnych i półsztywnych

W przypadku podziału na kategorie ruchu (KR1 – KR6) wyznaczano średnią temperaturę ekwiwalentną, jako średnią arytmetyczną dla wszystkich kategorii ruchu. W przypadku różnych lokalizacji stacji meteorologicznych, a więc różnych temperatur ekwiwalentnych na terytorium Polski, wyznaczano średnią ważoną temperatury, gdzie wagą był procent terytorium Polski o określonej głębokości przemarzania:

- 0,8m - obejmujący obszar 29,5% terytorium Polski,
- 1,0m - obejmujący obszar 57,1% terytorium Polski,
- 1,2m - obejmujący obszar 10,9% terytorium Polski,
- 1,4m - obejmujący obszar 2,5% terytorium Polski.

Zestawienie obliczonych temperatur ekwiwalentnych w poszczególnych lokalizacjach na terytorium Polski w okresie rocznym i w poszczególnych sezonach roku dla nawierzchni podatnych oraz półsztywnych przedstawiono w tablicach od 5.28 do 5.31.
Tablica 5.28. Zestawienie wyznaczonych wartości temperatur ekwiwalentnych dla nawierzchni podatnych i półsztywnych w okresie całego roku

<table>
<thead>
<tr>
<th>Lokalizacja stacji meteorologicznej</th>
<th>Temperatura ekwiwalentna, [°C] – okres całego roku</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Średnia wartość dla wszystkich kategorii ruchu – nawierzchnia podatna</td>
</tr>
<tr>
<td>Chojnice</td>
<td>16,0</td>
</tr>
<tr>
<td>Koszalin</td>
<td>16,3</td>
</tr>
<tr>
<td>Poznań</td>
<td>18,1</td>
</tr>
<tr>
<td>Szczecin</td>
<td>17,6</td>
</tr>
<tr>
<td>Wrocław</td>
<td>18,3</td>
</tr>
<tr>
<td>Zielona Góra</td>
<td>18,3</td>
</tr>
<tr>
<td>Gdańsk</td>
<td>15,6</td>
</tr>
<tr>
<td>Kielce</td>
<td>16,3</td>
</tr>
<tr>
<td>Kraków</td>
<td>17,7</td>
</tr>
<tr>
<td>Lublin</td>
<td>16,8</td>
</tr>
<tr>
<td>Łódź</td>
<td>17,6</td>
</tr>
<tr>
<td>Olsztyn</td>
<td>16,7</td>
</tr>
<tr>
<td>Opole</td>
<td>18,7</td>
</tr>
<tr>
<td>Toruń</td>
<td>17,8</td>
</tr>
<tr>
<td>Warszawa</td>
<td>18,6</td>
</tr>
<tr>
<td>Zamość</td>
<td>17,1</td>
</tr>
<tr>
<td>Białystok</td>
<td>16,2</td>
</tr>
<tr>
<td>Kętrzyn</td>
<td>17,3</td>
</tr>
<tr>
<td>Nowy Sącz</td>
<td>18,1</td>
</tr>
<tr>
<td>Przemyśl</td>
<td>18,5</td>
</tr>
<tr>
<td>Suwałki</td>
<td>15,5</td>
</tr>
<tr>
<td>Średnia ważona dla Polski:</td>
<td>17,3</td>
</tr>
</tbody>
</table>

Tablica 5.29. Zestawienie wyznaczonych wartości temperatur ekwiwalentnych dla nawierzchni podatnych i półsztywnych w okresie lata

<table>
<thead>
<tr>
<th>Lokalizacja stacji meteorologicznej</th>
<th>Temperatura ekwiwalentna, [°C] – okres lata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Średnia wartość dla wszystkich kategorii ruchu – nawierzchnia podatna</td>
</tr>
<tr>
<td>Chojnice</td>
<td>22,9</td>
</tr>
<tr>
<td>Koszalin</td>
<td>22,9</td>
</tr>
<tr>
<td>Poznań</td>
<td>25,1</td>
</tr>
<tr>
<td>Szczecin</td>
<td>24,4</td>
</tr>
<tr>
<td>Wrocław</td>
<td>25,4</td>
</tr>
<tr>
<td>Zielona Góra</td>
<td>25,3</td>
</tr>
<tr>
<td>Gdańsk</td>
<td>22,4</td>
</tr>
<tr>
<td>Kielce</td>
<td>23,3</td>
</tr>
<tr>
<td>Kraków</td>
<td>25,0</td>
</tr>
<tr>
<td>Lublin</td>
<td>24,0</td>
</tr>
<tr>
<td>Łódź</td>
<td>24,8</td>
</tr>
<tr>
<td>Olsztyn</td>
<td>23,8</td>
</tr>
</tbody>
</table>
Tablica 5.29. Zestawienie wyznaczonych wartości temperatur ekwiwalentnych dla nawierzchni podatnych i półsztywnych w okresie wiosna/jesień

<table>
<thead>
<tr>
<th>Lokalizacja stacji meteorologicznej</th>
<th>Temperatura ekwiwalentna, [°C]</th>
<th>Średnia ważona dla Polski:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Srednia wartość dla wszystkich kategorii ruchu – nawierzchnia podatna</td>
<td>Średnia wartość dla wszystkich kategorii ruchu – nawierzchnia półsztywna</td>
</tr>
<tr>
<td>Opole</td>
<td>25,9</td>
<td>26,8</td>
</tr>
<tr>
<td>Toruń</td>
<td>24,9</td>
<td>25,8</td>
</tr>
<tr>
<td>Warszawa</td>
<td>24,2</td>
<td>24,3</td>
</tr>
<tr>
<td>Zamość</td>
<td>24,4</td>
<td>25,1</td>
</tr>
<tr>
<td>Białystok</td>
<td>23,3</td>
<td>24,1</td>
</tr>
<tr>
<td>Kętrzyn</td>
<td>24,5</td>
<td>25,3</td>
</tr>
<tr>
<td>Nowy Sącz</td>
<td>25,2</td>
<td>26,0</td>
</tr>
<tr>
<td>Przemyśl</td>
<td>25,7</td>
<td>26,6</td>
</tr>
<tr>
<td>Suwałki</td>
<td>22,7</td>
<td>23,4</td>
</tr>
<tr>
<td>Średnia ważona dla Polski:</td>
<td>24,3</td>
<td>25,0</td>
</tr>
</tbody>
</table>

Tablica 5.30. Zestawienie wyznaczonych wartości temperatur ekwiwalentnych dla nawierzchni podatnych i półsztywnych w okresie wiosna/jesień

<table>
<thead>
<tr>
<th>Lokalizacja stacji meteorologicznej</th>
<th>Temperatura ekwiwalentna, [°C]</th>
<th>Średnia ważona dla Polski:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Srednia wartość dla wszystkich kategorii ruchu – nawierzchnia podatna</td>
<td>Średnia wartość dla wszystkich kategorii ruchu – nawierzchnia półsztywna</td>
</tr>
<tr>
<td>Chojnice</td>
<td>12,7</td>
<td>12,9</td>
</tr>
<tr>
<td>Koszalin</td>
<td>13,2</td>
<td>13,5</td>
</tr>
<tr>
<td>Poznań</td>
<td>14,0</td>
<td>14,5</td>
</tr>
<tr>
<td>Szczecin</td>
<td>13,9</td>
<td>14,3</td>
</tr>
<tr>
<td>Wrocław</td>
<td>14,3</td>
<td>14,8</td>
</tr>
<tr>
<td>Zielona Góra</td>
<td>14,2</td>
<td>14,6</td>
</tr>
<tr>
<td>Gdańsk</td>
<td>12,3</td>
<td>12,4</td>
</tr>
<tr>
<td>Kielce</td>
<td>12,8</td>
<td>13,0</td>
</tr>
<tr>
<td>Kraków</td>
<td>13,7</td>
<td>14,1</td>
</tr>
<tr>
<td>Lublin</td>
<td>13,1</td>
<td>13,3</td>
</tr>
<tr>
<td>Łódź</td>
<td>13,6</td>
<td>14,0</td>
</tr>
<tr>
<td>Olsztyn</td>
<td>12,9</td>
<td>13,1</td>
</tr>
<tr>
<td>Opole</td>
<td>14,4</td>
<td>14,9</td>
</tr>
<tr>
<td>Toruń</td>
<td>13,6</td>
<td>14,0</td>
</tr>
<tr>
<td>Warszawa</td>
<td>13,8</td>
<td>13,9</td>
</tr>
<tr>
<td>Zamość</td>
<td>13,3</td>
<td>13,5</td>
</tr>
<tr>
<td>Białystok</td>
<td>12,5</td>
<td>12,6</td>
</tr>
<tr>
<td>Kętrzyn</td>
<td>13,2</td>
<td>13,5</td>
</tr>
<tr>
<td>Nowy Sącz</td>
<td>14,1</td>
<td>14,5</td>
</tr>
<tr>
<td>Przemyśl</td>
<td>14,4</td>
<td>14,8</td>
</tr>
<tr>
<td>Suwałki</td>
<td>11,9</td>
<td>12,0</td>
</tr>
<tr>
<td>Średnia ważona dla Polski:</td>
<td>13,4</td>
<td>13,7</td>
</tr>
</tbody>
</table>
Zestawienie wyznaczonych wartości temperatur ekwiwalentnych dla nawierzchni podatnych i półsztywnych w okresie zimy

<table>
<thead>
<tr>
<th>Lokalizacja stacji meteorologicznej</th>
<th>Temperatura ekwiwalentna, [°C] – okres zimy</th>
<th>Średnia wartość dla wszystkich kategorii ruchu – nawierzchnia podatna</th>
<th>Średnia wartość dla wszystkich kategorii ruchu – nawierzchnia półsztywna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chojnice</td>
<td>1,5</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>Koszalin</td>
<td>3,3</td>
<td>3,3</td>
<td></td>
</tr>
<tr>
<td>Poznań</td>
<td>2,9</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>Szczecin</td>
<td>3,9</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>Wrocław</td>
<td>3,3</td>
<td>3,3</td>
<td></td>
</tr>
<tr>
<td>Zielona Góra</td>
<td>3,0</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>Gdańsk</td>
<td>1,6</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>Kielce</td>
<td>0,6</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Kraków</td>
<td>1,1</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>Lublin</td>
<td>0,2</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Łódź</td>
<td>1,6</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>Olsztyn</td>
<td>1,1</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>Opole</td>
<td>2,8</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>Toruń</td>
<td>2,1</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>Warszawa</td>
<td>1,6</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>Zamość</td>
<td>0,3</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>Białystok</td>
<td>-0,2</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Kętrzyn</td>
<td>0,7</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>Nowy Sącz</td>
<td>2,0</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Przemyśl</td>
<td>1,4</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>Suwałki</td>
<td>-0,9</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Średnia ważona dla Polski:</td>
<td>1,7</td>
<td>2,1</td>
<td></td>
</tr>
</tbody>
</table>

Podsumowanie obliczonych temperatur ekwiwalentnych zaokrąglonych do pełnej wartości stopnia dla całego terytorium Polski w okresie rocznym oraz w poszczególnych sezonach w roku dla nawierzchni podatnych przedstawiono w tablicy 5.32, natomiast dla nawierzchni półsztywnych w tablicy 5.33.

Tablica 5.32. Podsumowanie obliczonych wartości temperatur ekwiwalentnych dla konstrukcji nawierzchni podatnych

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Okres, dla którego wyznaczono T_{ekw}</th>
<th>Wartość temperatury ekwiwalentnej, [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Okres całego roku:</td>
<td>+17°C</td>
</tr>
<tr>
<td>2.</td>
<td>Okres lata (3 miesiące)</td>
<td>+24°C</td>
</tr>
<tr>
<td>3.</td>
<td>Dla okresu wiosny/jesieni (6 miesięcy)</td>
<td>+13°C</td>
</tr>
<tr>
<td>4.</td>
<td>Dla okresu zimy (3 miesiące)</td>
<td>+2°C</td>
</tr>
</tbody>
</table>
Tablica 5.33. Podsumowanie obliczonych wartości temperatur ekwiwalentnych dla konstrukcji nawierzchni półsztywnych

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Okres, dla którego wyznaczono T_{ew}</th>
<th>Wartość temperatury ekwiwalentnej, [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Okres całego roku:</td>
<td>+19°C</td>
</tr>
<tr>
<td>2.</td>
<td>Okres lata (3 miesiące)</td>
<td>+25°C</td>
</tr>
<tr>
<td>3.</td>
<td>Dla okresu wiosny/jesieni (6 miesięcy)</td>
<td>+14°C</td>
</tr>
<tr>
<td>4.</td>
<td>Dla okresu zimy (3 miesiące)</td>
<td>+2°C</td>
</tr>
</tbody>
</table>

5.5. Literatura:

6. Metody zapobiegania powstawaniu spękań odbitych w nawierzchniach półsztywnych

Opracował dr inż. Jacek Alenowicz

W niniejszym rozdziale przedstawiono zagadnienia związane z przeciwdziałaniem spękaniami odbitym w nawierzchniach półsztywnych. Wymieniony rodzaj uszkodzeń jest typowy dla nawierzchni, w których w warstwach podbudowy zastosowano materiał związany spojwem hydraulicznym, natomiast wyżej leżące warstwy wykonano z mieszanek mineralno asfaltowych. Uważa się, że problem ten jest większy w przypadku nawierzchni, w których podbudowy charakteryzują się znaczną wytrzymałością, np. są wykonane z chudego betonu. Biorąc pod uwagę zmiany, jakie wprowadzają w Polsce wytyczne WT-5 [27] w stosunku do wcześniejszych przepisów, np. [39] i stosowanej dotychczas u nas praktyki co do wytrzymałości warstw związanych cementem w podbudowach uznano, że zagadnienie zapobiegania spękaniom odbitym w nowych nawierzchniach półsztywnych zasługuje na szersze rozpoznanie.

W dalszej części rozdziału przedstawiono:

- charakterystykę spękań odbitych,
- warunki powstawania spękań poprzecznych w warstwach podbudowy związanych spojwem hydraulicznym,
- wpływ technologii wykonania na powstawanie spękań w warstwach podbudowy związanych spojwem hydraulicznym,
- sposoby minimalizacji spękań odbitych w nawierzchniach półsztywnych,
- podsumowanie.

6.1. Spękania odbite w nawierzchniach drogowych

Spękania odbite to poprzeczne spękania, które powstają w warstwach nawierzchni, wykonanych z mieszanek mineralno-asfaltowych, wskutek przemieszczeń w obrębie pęknięć istniejących w niżej leżących warstwach nawierzchni. Przemieszczenia te, związane z powtarzalnym oddziaływaniem kół pojazdów oraz zmianami temperatury wywołują naprężenia rozciągające i ściskające w warstwie asfaltowej. Kiedy wartość naprężeń w konkretnym cyklu obciążenia przekroczy wytrzymałość mieszanki mineralno-asfaltowej, następuje inicjacja pęknienia, które wskutek kolejnych impulsów naprężeń propaguje ku górze. Ostatecznie pęknięcie pojawia się na powierzchni jezdni. Taki mechanizm powstawania spękań odbitych w warstwach asfaltowych, wskutek propagacji od dołu ku górze, jest podstawowym opisywanym w literaturze [np. 2,28,29]. Bardziej szczegółowy opis mechanizmu powstawania spękań odbitych na
Spękania odbite są charakterystycznym uszkodzeniem w przypadku:

- nawierzchni półsztywnych,
- nakładek asfaltowych układanych na remontowanych nawierzchniach asfaltowych, spękanych poprzecznie,
- nakładek asfaltowych układanych na remontowanych nawierzchniach betonowych.

Rys 6.1. Schemat rozwoju spękania odbitego [28]

Spękania odbite w nawierzchniach półsztywnych wynikają z odwzorowania spękań skurczowych, powstałych w podbudowie. Podstawowe czynniki i sposoby pozwalające zminimalizować ilość spękań odbitych w nawierzchniach półsztywnych to:

1. Umiejętne projektowanie mieszanek związanych cementem, stosowanych w podbudowach.
2. Przestrzeganie zasad wykonania warstwy podbudowy związanej cementem.
3. Wykonywanie szczelin lub wprowadzenie mikrospękań w czasie wykonania warstwy podbudowy.
4. Wykonywanie warstw pośrednich.

Ponadto do zmniejszenia ilości spękań odbitych w nawierzchniach półsztywnych przyczynia się wykonywanie grubszych warstw asfaltowych oraz stosowanie w nich mieszanek mineralno-asfaltowych o małej podatności na spękania, na przykład z zastosowaniem asfaltów modyfikowanych elastomerem. Jest to
korzystne również w przypadku remontów nawierzchni asfaltowych i betonowych, zagrożonych wystąpieniem spękaur odbitych w nowych nakładkach asfaltowych.

W opracowaniach dotyczących nawierzchni półsztywnych [7,9,10,22,24] jako potencjalny środek zaradczy wymienia się wykonywanie warstw pośrednich, do których należą: SAMI, geotekstylia nasycone asfaltem, cienkie warstwy z drobnoziarnistej mieszanek mineralno-asfaltowej oraz grube warstwy pośrednie z kruszywa. Zastosowanie tych rozwiązań (por. p. 6.5.) w nowych nawierzchniach półsztywnych jest jednak sporadyczne. Przeważają zabiegi i techniki omówione w p. 6.3 i p. 6.4. Wykorzystanie warstw pośrednich z geosyntetyków przewidziano w wytycznych WT-5 [27] w przypadku nawierzchni z podbudową zasadniczą o wytrzymałości na ściskanie R_{c28} w zakresie 5-10 MPa.

Zbrojenie warstw asfaltowych na spodzie (siatki syntetyczne, siatki szklane, siatki stalowe), stosowane w przypadku remontów nawierzchni asfaltowych i betonowych [2,5,23,24,30] nie jest praktycznie stosowane w czasie budowy nowych nawierzchni półsztywnych [7,22].

6.2. Spękania poprzeczne w podbudowach związanych cementem

Spękania poprzeczne podbudów związanych cementem mają charakter spęków skurczowych. Szczegółowy opis mechanizmu oraz warunków powstawania tych spęków przedstawiono m.in. w pracach [1,3,25] na podstawie bogatych studiów literatury. Podbudowy związane cementem podlegają skurczowi:

- pierwotnemu, spowodowanemu hydratacją cementu i wysychaniem świeżej mieszanki,
- termicznemu, spowodowanemu zmianami temperatury w ciągu doby i w ciągu roku.

Oba rodzaje skurczu są przyczyną powstawania spęków podbudowy i mają związek z powstawaniem spęków odbitych. Znaczenie obu rodzajów skurczu w procesie powstawania spęków odbitych jest jednak różnie przedstawiane w literaturze. W publikacjach amerykańskich np. [8,9,10,], przeważa opinia, że zasadnicze znaczenie ma skurcz pierwotny, przede wszystkim wynikający z szybkiego wysychania świeżej mieszanki. W publikacjach francuskich np. [28] stwierdza się, że spękania odbite w nawierzchniach półsztywnych wynikają przede wszystkim ze skurczu termicznego warstwy związanej cementem.

Spękania w warstwach związanych cementem występują najczęściej w postaci wąskich spęków poprzecznych w odległości 2,5 – 6,0 m [6,9]. Przez wąskie spękania rozumie się pęknięcia o szerokości do 3 mm. Występuje w nich zazębienie i współpraca pękniętej warstwy podbudowy. Wnikanie wilgoci w głąb nawierzchni w kierunku podłoża jest mniej prawdopodobne w przypadku wąskich
spękan. O ile spękania w warstwie związanej spoiwem są wąskie niebezpieczeństwo spękań odbitych jest mniejsze.

W przypadku wystąpienia w podbudowie szerokich spękań, o szerokości powyżej 6 mm niebezpieczeństw w wystąpienia spękań odbitych i osłabienia nawierzchni w ich obrębie jest znaczne [6,8,9,10]. W przypadku znacznej szerokości spękań występuje słabe zazębienie i współpraca podbudowy w obrębie pęknięcia oraz zagrożenie wnikaniem wody w glab nawierzchni oraz powstania nierówności nawierzchni. Badania wykonane w USA wykazały, że podstawową przyczyną występowania szerokich spękań poprzecznych w podbudowach związanych cementem jest skurcz pierwotny, związany z szybkim wysychaniem mieszanki. Skurcz związany z hydratacją cementu oraz skurcz termiczny mają mniejszy wpływ na powstawanie szerokich spękań podbudowy [6,8,9,10]. Nadmierne pękanie warstwy związanej cementem wynika z następujących przyczyn:

- wbudowanie i zagęszczanie warstwy wykonanej z mieszanki o nadmiernej wilgotności,
- gwałtowna utrata wody przez wykonaną warstwę,
- złe zagęszczenie warstwy,
- zła recepta mieszanki i stosowanie nadmiernej ilości cementu.

W przypadku wykorzystania gruntów do wykonania warstwy związanej cementem duży skurcz i nadmierne pękanie może wynikać ze zbyt wysokiej zawartości części pylastych i ilastych.

6.3. Wpływ technologii wykonania na powstawanie spękań w podbudowach związanych cementem

6.3.1. Właściwości mieszanki związanej cementem

Cechy recepty, według której wyprodukowano mieszankę, najbardziej istotne ze względu na wielkość skurczu i pęknięcie podbudowy to:
zawartość i rodzaj cementu oraz ew. domieszki,
wytrzymałość.

Parametry te są ze sobą powiązane. Ponadto wpływ ma zawartość części pylastych i ilastych w materiale poddannym stabilizacji. Znaczna ilość tych frakcji jest niekorzystna, i skurcz będzie duży, szczególnie w przypadku wbudowania i zagęszczania mieszanek o zawyżonej wilgotności.

Ważnym czynnikiem, wpływającym na skurcz, wymienianym w wielu publikacjach, np. [8,9,10,16,34] jest zawartość cementu. Zwraca się uwagę na to, że niejednokrotnie w dążeniu do zapewnienia wysokiej trwałości i niezawodności nawierzchni, stosuje się zawyżoną ilość cementu. Za takim rozumowaniem stoi przekonanie, że większa zawartość spoiwa zapewni większą wytrzymałość, a to z kolei zwiększy trwałość. Tymczasem zawyżona zawartość cementu powoduje istotne pogorszenie zachowania nawierzchni i jej trwałości. Przedstawiają to zależności przedstawione na rys. 6.2. Chociaż ze wzrostem ilości spoiwa rośnie wytrzymałość, to zwiększona ilość cementu powoduje zużycie większej ilości wody w procesie hydratacji, co zwiększa skurcz. Co ważniejsze, chociaż w opisanej sytuacji powstają rzadziej rozmieszczone pęknięcia, to jednak większy skurcz, rozkładający się na mniejszą ich liczbę powoduje, że są one wyraźnie szersze. Szerokie spękania osłabiają lokalnie podbudowę i szybko odbijają się w warstwach asfaltowych.

Rys. 6.2. Zawartość spoiwa musi być optymalna by spełnić wymagania w zakresie wytrzymałości i trwałości warstwy [31]

Zawartość cementu powinna więc być optymalna, to znaczy najmniejsza, która zapewnia uzyskanie wymaganych cech technicznych podbudowy. Użycie większej ilości spoiwa prowadzi do zbędnych kosztów i nadmiernego pękania.

Ogólne Specyfikacje Techniczne [39] stosowane w Polsce podają maksymalną ilość cementu w mieszance, w zależności od przeznaczenia warstwy i obciążenia
ruchem. Nowe wytyczne WT-5 [27] określają jedynie minimalne zawartości spoiva, za PN-EN-14227-1. Wydaje się, że w świetle doświadczeń w wielu krajach, maksymalne wartości powinny być podane lub zasugerowane. Jeżeli nie jest to możliwe ze względu na różnorodność stosowanych spoiv i mieszanek mineralnych, należy zwrócić uwagę na to jak istotne w kontekście trwałości i utrzymania nawierzchni jest ograniczenie ilości spoiva do niezbędnego minimum.

Nie tylko wielkość skurczu, ale również prędkość z jaką następuje jego przyrost, wpływa na charakterystykę spękań skurczowych i późniejsze zagrożenie spękaniami odbitymi. Ze względu na to, dla ograniczenia skurczu, zaleca się stosowanie cementów wolno wiążących, wydzielających mniejsze ilości ciepła w czasie hydratacji [7,16,34] oraz popiołów lotnych [6,9,16,34]. Stosowanie tych spoiv pozwala zmniejszyć skurcz bez negatywnego wpływu na wytrzymałość podbudowy.

6.3.2. Wilgotność mieszanki w czasie wbudowania

Wbudowanie mieszanki związanej cementem o zawyżonej wilgotności jest podawane jako jedna z głównych przyczyn powstawania nadręcznych spękań podbudowy. Wilgotność większa niż konieczna do uzyskania maksymalnej gęstości objętościowej warstwy powoduje większy skurcz pierwotny (przy wysychaniu) [6,9,35]. George [35] podaje, że wzrost wilgotności mieszanki z 10% do 14% powoduje wzrost skurczu pierwotnego o 35-170%. Według badań amerykańskich [6,9,35,36] zwiększona wilgotność mieszanki w czasie wbudowania ma znacznie większy wpływ na wystąpienie dużego skurczu niż inne czynniki, takie jak zawartość spoiva czy temperatura wbudowania. W efekcie przy większym skurczu pierwotnym powstają szerokie pęknięcia warstwy podbudowy, które łatwiej penetrują ku górze przez warstwy z MMA.

Podsumowując – wilgotność powinna być jak najmniejsza, jednak musi umożliwiać właściwe zagęszczenie. Zaleca się aby wilgotność była równa optymalnej, z tolerancją 0% do -2% [6,9]. W polskiej pracy [38] zaleca się by wbudowanie mieszanki związanej cementem odbywało się przy wilgotności o 2-3% poniżej optymalnej, wg normalnej próby Proctora.

6.3.3. Zagęszczenie warstwy

Zagęśczenie warstwy podbudowy z mieszanki związanej spoivem hydraulicznym powinno być jak najlepsze. Dobre zagęśczenie ogranicza skurcz materiału [6,9,10,35]. W dobrze zagęszczonej mieszance ziarna gruntu lub kruszywa są położone blisko siebie i zazębione, dzięki czemu uzyskuje się minimum wolnych przestrzeni oraz współpracę przylegających części podbudowy w sytuacji, gdy pojawi się spękanie skurczowe.
Adaska i Luhr [10] podają (za Bhandari), że w przypadku zagęszczenia gruntu stabilizowanego cementem z zastosowaniem energii odpowiadającej zmodyfikowanej próbie Proctora (2,7 J/cm3) notowano 50% redukcję skurczu, w porównaniu z gruntem zagęszczonym według normalnej próby Proctora (0,6 J/cm3). Dodatkowo wilgotność optymalna według zmodyfikowanej próby Proctora jest mniejsza niż wilgotność optymalna według normalnej próby Proctora, co również jest korzystne (por. p. 6.3.2.)

Na rys. 6.3. [10] przedstawiono zależności zmiany skurczu z upływem czasu w przypadku gruntu stabilizowanego cementem, o różnej wilgotności i zagęszczeniu. Z przedstawionych zależności wynika jednoznacznie, że najmniejszy skurcz notowany dla materiału o najmniejszej wilgotności i najlepszym zagęszczeniu.

![Rys. 6.3. Wpływ zagęszczenia i wilgotności na skurcz gruntu stabilizowanego cementem [10]](image)

6.3.4. Temperatura wbudowania mieszanki

Temperatura wbudowania mieszanki jest istotnym czynnikiem [3,6,28,37], jednak jednocześnie jest to czynnik na który wykonawca robót ma ograniczony wpływ, biorąc pod uwagę harmonogram prowadzenia robót. Stwierdzono większą ilość
spękań odbitych w przypadku nawierzchni, których podbudowy związane cementem wykonywano w czasie gorącego lata. Wynikać to może dwóch przyczyn:

- W ciepłym okresie następuje szybsze odparowanie wody, jak również proces wiązania spoiva przebiega szybciej. Oba czynniki powodują, że szerokość rys powstających w szybko twardniejącym materiale, przy intensywnym skurczu, jest duża. W efekcie powstają korzystne warunki do szybkiego rozwoju spękań odbitych – przemieszczenia poziome w obrębie szerokich pęknięć są duże, a słabsze zazębienie w obrębie pęknięcia sprzyja ruchom pionowym i niszczącemu oddziaływaniu naprężeń ścianających od obciążeń użytkowych.

- Warstwa podbudowy wykonana w wysokiej temperaturze będzie podlegała większemu skurczowi termicznemu zimą, ponieważ wielkość tego skurczu jest bezpośrednio związana z różnicą temperatur pomiędzy okresem wiązania spoiva i rozpatrywaną chwilą. Otworzenie w czasie mrozów spękań, powstałych w podbudowie, będzie więc duże jeżeli wykonanie warstwy będzie przebiegać w wysokiej temperaturze.

Niekorzystny wpływ wysokich temperatur w okresie wykonania warstwy podbudowy należy minimalizować, stosując odpowiednią pielęgnację (por. p. 6.3.5.).

6.3.5. Pielęgnacja warstwy podbudowy

Właściwa pielęgnacja zapewnia:

- uzyskanie zakładanej wytrzymałości przez mieszankę wbudowaną w warstwę podbudowy,
- ograniczenie rozwarcia i ilości spękań skurczowych.

Szczególnego znaczenia pielęgnacja nabiera w przypadku robót prowadzonych w okresie upałów, kiedy to niedociągnięcia w tym zakresie skutkują gwałtownym odparowaniem wody z uformowanej warstwy podbudowy. Efektem jest nadmierny skurcz i szerokie spękania, a w skrajnych przypadkach nie uzyskanie wymaganej wytrzymałości warstwy, wskutek braku odpowiedniej ilości wody do pełnej hydratacji spoiva [6].

Przepisy większości krajów wymagają pielęgnacji warstwy związanej spoiwem przez okres 7 dni, jednak można spotkać informacje o skracaniu tego okresu do 3-7 dni [31], jak również o wbudowywaniu wyżej leżącej warstwy z MMA kiedy tylko jest to możliwe ze względu na wytrzymałość i nośność warstwy związanej spoiwem [7,8].
Dla rozwoju spękań skurczowych decydujące znaczenie ma pielęgnacja przez pierwsze 2-4 doby po wykonaniu warstwy [3,32]. Pielęgnacja zapewnia utrzymanie górnej części warstwy w stanie wilgotności, zbliżonej do występującej w dolnej części warstwy. Sytuacja taka zmniejsza wielkość naprężeń skurczowych i w efekcie liczbę spękań oraz ich szerokość. Według niektórych publikacji, np. [8,10] wydłużenie pielęgnacji, choć ogólnie działa pozytywnie, ma jednak ograniczony wpływ na wielkość skurczu warstw związanych cementem. Wydłużenie pielęgnacji skutkuje węższymi spękaniami, przy zwiększonym odstępie między nimi, jednak kluczowa jest pielęgnacja w okresie pierwszych 3-4 dni.

W pielęgnacji wykorzystuje się następujące sposoby:

- systematyczne skrapianie wodą powierzchni wykonanej warstwy,
- skropienie emulsją asfaltową,
- skropienie środkiem powłokotwórczym.

Według publikacji amerykańskich [6,9,10,31] skrapianie wodą jest skutecznym i bardzo dobrym sposobem pielęgnacji. Warstwa jest utrzymywana w stanie wilgotnym i jednocześnie oziębiana wskutek odparowania wody. Popularnym i dobrym sposobem jest skropienie warstwy związanej spoiwem emulsją asfaltową [34], niekiedy z posypaniem drobnym kruszywem. Wyrażany bywa jednak pogląd [3], że zastosowanie tego sposobu pielęgnacji w czasie upalnej pogody nie jest dobrym rozwiązaniem, jeżeli warstwa dłużej pozostanie nieprzykryta. Czarny kolor asfaltu powoduje pochłanianie energii słonecznej i wzrost temperatury, w której przebiega wiązanie warstwy. Może to zwiększyć skurcz termiczny zimą i szerokość pęknięć (por. p. 6.3.4.), a w efekcie zwiększyć propagację spękań odbitych.

6.3.6. Wbudowanie warstwy z MMA na warstwie związanej cementem

W literaturze są prezentowane dwie przeciwwstawne opinie, dotyczące tego, kiedy, biorąc pod uwagę niebezpieczeństwo powstania spękań, najlepiej jest wbudować warstwę z MMA, bezpośrednio spoczywającą na podbudowie.

Według pierwszej opinii, warstwę z MMA należy wbudować później – od 14 do 28 dni od wykonania podbudowy, a o ile jest to możliwe zaleca się by odwlec tę czynność jeszcze bardziej [6,9,34]. W okresie czasu, który upłynie pomiędzy ułożeniem jednej i drugiej warstwy nastąpi większość skurczu i w efekcie warstwa z MMA zostanie ułożona nad już ukształtowanymi rysami skurczowymi. Pozwoli to uniknąć oddziaływania rozwijających się rys skurczowych na spód warstwy z MMA, co będzie miało miejsce w przypadku ułożenia jej przed zakończeniem skurczu.
Wyrażany jest jednak również pogląd, że ułożenie warstwy z MMA powinno nastąpić jak najszybciej, według zaleceń holenderskich [7] nawet do 24 godzin od ułożenia warstwy związanej cementem. Pozwala to uniknąć spękań odbitych [8]. Według Portland Cement Association (George [8]) ułożenie warstwy z MMA do 2-3 dni od wbudowania mieszanki związanej cementem zmniejsza skurcz związany z wysychaniem mieszanki, przez co rysy w podbudowie są wąskie i gęście rozmieszczone.

6.4. Celowa inicjacja spękań w podbudowach związanych cementem

Inicjacja spękań w warstwie podbudowy związanej cementem w czasie jej wykonania ma na celu utworzenie licznych spękań o małej szerokości, w przypadku których prawdopodobieństwo odbicia się z upływem czasu na powierzchni warstw asfaltowych będzie mniejsze.

Celowa inicjacja spękań w warstwie podbudowy może polegać na:

- Wytworzeniu regularnych szczelin (rowków szczelinowych) poprzez umieszczenie w warstwie przekładek, wykonanie rowków w świeżej mieszance lub nacięcie twarzniczej mieszanki.
- Wytworzeniu bardzo licznych i losowo rozmieszczonych w warstwie mikrospękań, będących najczęściej efektem kilku przejazdów walca wibracyjnego.

6.4.1. Regularne szczeliny i rowki szczelinowe wykonywane w czasie budowy

Wykonywanie rowków lub szczelin, wymuszających miejsce wystąpienia spękań skurczowych w warstwie związanej spoiwem należy do najczęściej stosowanych sposobów przeciwdziałania spękaniom odbitym w nowych nawierzchniach półsztywnych. We Francji katalog typowych konstrukcji nawierzchni Setra/LCPC [11] wymaga stosowania omawianego rozwiązania na sieci dróg krajowych, w przypadku nawierzchni obciążonych bardzo ciężkim ruchem klas TC6, TC7 oraz TC8 i podbudów z mieszanek mineralnych związanych cementem klasy GC4 [11,17]. Wytyczne WT-5 [27] podają, że w przypadku podbudów zasadniczych z mieszanek związanych cementem o R_{c28} > 10 MPa należy stosować dylatowanie podłużne i poprzeczne. Nie podano jednak bliższych zaleceń w tym zakresie co do technologii i rozstawu.

6.4.1.1. Umieszczanie wkładek

Próby z wprowadzaniem do warstwy wkładek w czasie wbudowania mieszanki związanej cementem były prowadzone we Francji już od lat 1970-tych [3]. Początkowo wkładki o przekroju trójkąta lub w formie grubej taśmy umieszczano na podłożu przed ułożeniem mieszanki, w celu osłabienia w tych miejscach przekroju warstwy i umiejscowienia pęknięcia nad wkładką. Uzyskiwano
zakładany efekt co do lokalizacji pęknięcia. W literaturze brak informacji na temat aktualnego zakresu wykorzystania omawianego rozwiązania i jego skuteczności w minimalizacji spękań odbitych.

Obecnie we Francji stosuje się co najmniej trzy technologie polegające na umieszczeniu w przygotowanym rowku wkładki z tworzywa sztucznego.

Pierwsza z nich, stosowana już w latach 1970, została opisana w raporcie PIARC [24]. Odpowiednio oprzyrządowany walec (rys. 6.4.) wykonuje rowek na głębokość 10 cm w świeżej mieszance, w którym umieszczona jest taśma, rozwijana z rolki. Wprowadzenie taśmy ogranicza strzępienia na krawędziach. Powierzchnia warstwy, po umieszczeniu wkładki, wymaga powtórnego zagęszczenia. Zastosowanie omawianej technologii podnosi koszt wykonania warstwy o około 2% [24].

![Rys. 6.4. Maszyna do formowania rowka w podbudowie i wprowadzania taśmy z tworzywa sztucznego [24].](image)

W roku 1983 we Francji została opracowana, rozwinięta i opatentowana przez firmę SACER technologia „joint-actif” [18,19]. Jest ona obecnie stosowana [7,20,30]. Polega ona na umieszczeniu w świeżej mieszance sztywnej wkładki z PCV, której wysokość jest nieco mniejsza od grubości warstwy. Kolejne czynności związane z wbudowaniem wkładki są następujące:

1. Wykonanie w warstwie, przed zagęszczeniem, rowka na pełną głębokość. Rowki wykonuje się wregularnych odstępach 2-3 metrów [19] z zastosowaniem noża wibracyjnego w kształcie wydłużonej liter V (rys. 6.5.).
2. Umieszczenie w rowku wkładki z PCV o przekroju sinusoidalnym. Kształt wkładki ma na celu poprawę współpracy obu części podbudowy stykających się w szczelinie. Wkładka zostaje umieszczona pionowo w taki sposób, że odległość od jej górnej krawędzi do powierzchni warstwy podbudowy wynosi od 1 do 5 cm. Na rys. 6.6. pokazano przekrój przez warstwę podbudową w obrębie wkładki. Grubość wkładki wynosi od 0,7 do 1,0 mm, a wysokość od 16 do 24 cm. Wkładki o wysokości 16-20 cm mają
3 fale, a o wysokości 20-24 cm mają 4 fale (długość fali około 4 cm). Maksymalna długość wkładki wynosi 2,90 m.

3. Wstępne zagęszczenie mieszanki po obu stronach rowka z wkładką, z zastosowaniem dwóch grzebieni wibracyjnych (Rys. 6.7. a) i b))

4. Zagęszczenie walcami warstwy podbudowy, z ułożonymi w niej wkładkami, zgodnie w wymaganiami.

Inną technologią, opracowaną we Francji jest OLIVIA®. Została ona opracowana w firmie Eurovia i opatentowana [17,20,30]. Obejmuje ona następujące czynności:

1. Wykonanie rowków w świeżej warstwie przed zagęszczeniem; w odstępie około 3 metrów [30]. Rowki mają w przybliżeniu głębokość równą połowie grubości warstwy, a wykonuje je urządzenie (mini-plug) przesuwane poprzecznie. Widok maszyny przedstawiono na rys. 6.8.

2. Umieszczenie w rowku, w miarę jego wykonywania, paska bardzo cienkiej (40÷80 μm) folii z polietylenu, rozwijanej z rolki (rys 6.9.). Szerokość taśmy z tworzywa sztuczowego wynosi 1/3+1/5 grubości warstwy, najczęściej 8 cm. Góra krawędź pasa folii jest umieszczana parę centymetrów poniżej powierzchni warstwy.

3. Zagęszczenie warstwy. Bardzo cienka wkładka ulega deformacji w czasie zagęszczenia, co zapewnia dobrą współpracę w obrębie uformowanej szczeliny.
Rys. 6.7. Grzebienie wibracyjne do zagęszczenia mieszanki wzdłuż wkładki a) przed zagęszczeniem rowka z umieszczoną wkładką, b) po zagęszczeniu [19,20].

Rys. 6.8. Maszyna do wykonywania szczelin w technologii OLIVIA® [7].
6.4.1.2. Wykonanie rowków w świeżej mieszance

W Europie w celu ograniczenia spękań odbitych stosuje się wykonanie rowków w świeżej warstwie związanej spoiwem oraz ich wypełnienie emulsją asfaltową [7,20,30]. Sposób ten stosuje się we Francji, Austrii, Hiszpanii i Szwajcarii. Odległość między rowkami wynosi najczęściej 3÷4 metrów, za wyjątkiem Szwajcarii, gdzie odległość ta wynosi 5÷15 metrów [7].

W Austrii do wykonania rowka stosuje się najczęściej tarcze zamontowane na krawędzi bębna walca, użytego do zagęszczania (Rys. 6.10.). Głębokość rowka wynosi 1/3 grubości warstwy [7]. Niezwłocznie po uformowaniu rowek jest wypełniany emulsja asfaltową.
We Francji, a także w węższym zakresie w Hiszpanii, znajduje zastosowanie metoda CRAFT®, opracowana i opatentowana przez firmę Eurovia [7,17,20,30]. Do wykonania rowka stosuje się specjalną końcówkę, która porusza się poprzecznie, wykonując rowek i jednocześnie wypełniając go emulsją asfaltową. Widok urządzenia przedstawiono na rys. 6.11. i rys. 6.12. Głębokość rowka wynosi od 2/3 do pełnej grubości warstwy [17]. Po wykonaniu i wypełnieniu rowków warstwa jest zagęszczana.

Emulsja asfaltowa, wprowadzona do rowka, pełni podwójną rolę. Woda zawarta w emulsji, mająca niski wskaźnik pH, opóźnia wiązanie cementu przez co łatwiej formuje się pęknięcie skurczowe. Asfalt natomiast tworzy nieciągłość, która dokładnie lokalizuje pęknięcie skurczowe. Po powstaniu pęknięcia jego powierzchnia, pokryta asfaltem, jest mniej wrażliwa na wodę i ścieranie [17]. Ponadto obecność asfaltu w strefie pęknięcia przyczynia się do kompensowania i redukcji przemieszczeń przekazywanych na leżącą powyżej warstwę z MMA.

![Rys. 6.11. Widok urządzenia CRAFT®][7]
![Rys. 6.12. Widok końcówki CRAFT® wykonującej rowek i wypełniającej go emulsją asfaltową][7]

Wykonanie rowków w świeżej mieszance związanej cementem zostało zastosowane w Polsce w 2003 roku przez firmę Strabag, w czasie budowy autostrady A2 na odcinku Września-Nowy Tomyśl. Do wykonania rowka stosowano tarcze mocowane do walca. Rowki wykonywano w ciągu 2 godzin od zagęszczenia warstwy podbudowy, na 1/3 jej grubości. Rowki po uformowaniu były wypełniane asfaltową masą zalewową, a strefa wzdłuż rowków dogęszczana. W roku 2008, zgodnie z harmonogramem etapowego wzmacniania nawierzchni, wbudowano dwie warstwy z MMA o łącznej grubości 15 cm. W obrębie spękań poprzecznych układano paski geosiatki o szerokości 2 metrów.
Autorzy niniejszego opracowania nie dysponują informacją na temat skuteczności rozwiązania zastosowanego w roku 2003 i liczby spękań odbitych na wzmacnianym odcinku w roku 2008.

6.4.1.3. Nacinanie rowków w stwardniałej warstwie

Inicjację spękań w podbudowie związanej spoiwem można również uzyskać wykonując nacięcia w stwardniałej warstwie [34]. Do nacinania stosuje się piły z tarczą diamentową, takie jakich używa się w wykonywaniu szczelin w nawierzchniach betonowych. Głębokość nacięć, wykonywanych w regularnych odstępach co 3+5 metrów, wynosi najczęściej około 1/3 grubości warstwy.

Podstawowym problemem jest zniszczenie brzegów i strzępenie krawędzi nacięcia. Uszkodzeń takich można uniknąć tylko wówczas, gdy warstwa ma dostateczną wytrzymałość. Ziarna mineralne będą wówczas wystarczająco osadzone w warstwie i nie będą wyrywane przez tarczę. Zanim warstwa osiągnie taką wytrzymałość występują jednak często spękania skurczowe i stosowanie omawianej technologii nie zawsze jest skuteczne, chociaż są prezentowane przykłady skutecznych zastosowań nacinania (rys. 6.13.). Szerzej obecnie wykorzystuje się jednak formowanie rowków w świeżej mieszance [24], co omówiono w p. 6.4.1.2.

![Rys. 6.13. Wpływ nacinania podbudowy na ilość spękań odbitych](image)

Nacinanie rowków w stwardniałej mieszance związanej cementem zostało zastosowane w Polsce w 2004 roku przez firmę NCC, w czasie budowy autostrady A2 na odcinku Września-Newy Tomyśl. Nacięcia wykonywano piłą, po 3 dniach od ułożenia warstwy, w odstępach 2+3 metrów. W roku 2008, zgodnie z harmonogramem etapowego wzmacniania nawierzchni, wbudowano dwie warstwy z MMA o łącznej grubości 19 cm. Wbudowanie nowych warstw poprzedziło frezowanie istniejącej nawierzchni na głębokość 5 cm. W obrębie spękań poprzecznych układano paski geosiatki o szerokości 2 metrów. Autorzy niniejszego opracowania nie dysponują informacją na temat skuteczności
rozwiązania zastosowanego w roku 2004 i liczby spękań odbitych na wzmacnianym odcinku w roku 2008.

6.4.2. Mikrospękania

Istnieje zgodność co do tego, że ograniczenie szerokości spękań powstających w warstwie związanej cementem powoduje zmniejszenie ryzyka wystąpienia spękań odbitych. Zmniejszenie szerokości oraz rozproszenie spękań można uzyskać poddając warstwę podbudowy oddziaływaniu obciążenia parę dni po wykonaniu. W efekcie w warstwie powstaną setki włosowatych mikrospęków, które przejmą skurcz w początkowym okresie wiązania i zminimalizują powstawanie pojedynczych i szerszych spękań poprzecznych.

6.4.2.1. Zastosowanie walców wibracyjnych

Obecnie do wywołania mikrospęków stosuje się w praktyce wyłącznie walc wibracyjne. Technika ta została po raz pierwszy zastosowana w Austrii w połowie lat 1990-tych [10]. Od tego czasu stosowanie jej w Europie nie rozwinięło się jednak szerzej [7,22], głównie ze względu na brak możliwości ścisłej kontroli liczby i wielkości spękań oraz niebezpieczeństwo osłabienia warstwy podbudowy i obawy o negatywny wpływ na trwałość zmęczeniową nawierzchni.

Można jednak zaobserwować spore zainteresowanie techniką mikrospęków w Stanach Zjednoczonych A.P., połączone z prowadzeniem badań terenowych i weryfikacją skuteczności omawianej techniki na odcinkach doświadczalnych [10, 12,13,15]. Na podstawie przeprowadzonych badań podano, że spękania odbite zostały bardzo ograniczone (4 do 10 krotnie w stosunku do odcinka referencyjnego) [10, 14], a technikę mikrospęków określono jako „obiecującą”.

Halsted z PCA stwierdza, że metoda, choć stosunkowo nowa, daje jak dotąd „znakomite rezultaty” [6,9]. Przeprowadzono badania zmian modułu odkształcenia podbudowy [12,13,14] Wykazały one, że chociaż dwa przejścia walca wibracyjnego dwa dni po wykonaniu warstwy powodowały spadek wartości modułu o ok. 30%, a kolejne dwa przejścia o dalsze 15-20%, to jednak z upływem czasu, wskutek postępującego procesu wiązanego cementu, nastąpiła wzrost sztywności warstwy i po 6 miesiącach obserwowano niewielki lub nie obserwowano żadnego wpływu mikrosękę na nośność. [10, 12, 14]. Do wykonania podbudowy stosowano mieszanki o wytrzymałość na ściskanie 3,4 MPa po 7 dniach. Na rys. 6 15. przedstawiono wyniki badań wytrzymałości na ściskanie próbek pochodzących z warstw w których wprowadzono mikrosękę [33]. Nie odbiegała ona od wytrzymałości na ściskanie próbek kontrolnych.

Podstawowe czynniki, istotne dla powodzenia technologii mikrosękę zastosowaniem walców wibracyjnych, są następujące:

- moment wykonania wałowania,
- liczba przejść walca,
- masa walca i parametry wibracji,
- prędkość poruszania się walca.

Sebesta [12, 15] i Scullion [14] przedstawiają następujące zalecenia w tym zakresie:

- Walce powinien wykonać 3 przejścia (tam i z powrotem) z prędkością 3,2-4,8 km/godz.
- Należy stosować ciężki (minimum 12 ton) stalowy walec wibracyjny, pracujący z zastosowaniem wysokiej amplitudy i częstotliwości drgań.

Po wprowadzeniu mikrosękę warstwa powinna być poddana dalszej pielęgnacji przez co najmniej 3 dni.

W opracowaniu Duńskiego Instytutu Drogowego [22] stwierdza się, że lepsze rezultaty notuje się w przypadku słabszych warstw o grubości do 15 cm. W przypadku grubych podbudów powstanie odpowiedniej siatki spęków nie jest pewne [3].
Rys. 6.15. Wyniki badań wytrzymałości na ściskanie próbek pochodzących z warstw w których wprowadzono mikrospękania [33].

6.4.2.2. Inne sposoby wprowadzenia spękań w wykonanej warstwie

W literaturze wymienia się jeszcze dwa sposoby celowego wywołania spękań w warstwie związanej cementem po jej wykonaniu:

- powtarzalne zrzucanie dużego ciężaru (kuli) na wykonaną warstwę [3, 24],
- oddanie warstwy do ruchu krótko po wykonaniu [3, 21, 34].

Próby ze zrzucaniem kuli stalowej o masie około 1 tony przeprowadzono we Francji (rys. 6.16.). Kulę zrzucano z różnej wysokości: 10, 20 lub 30 cm, w osiach pasów ruchu, w regularnych odstępach co 4 metry. Kula upadała na stalową płytę o średnicy 30 cm. Po trzech latach stwierdzono mniej spękań odbitych w strefach, gdzie użyto omawianą technikę, jednak nie jest ona obecnie stosowana [24].
Innym sposobem jest oddanie warstwy podbudowy do ruchu krótko po wykonaniu. Sposób ten stosowano np. w Japonii i niektórych stanach Australii [3]. Próby prowadzono również w Niemczech i Austrii [24]. Wnioski dotyczące skuteczności omawianego sposobu w przeciwdoświadczaniu spękaniami odbitymi nie są jednoznaczne, natomiast zwraca się uwagę na brak możliwości kontroli wpływu wczesnego obciążenia ruchem na nośność i trwałość warstwy podbudowy.

Interesujące obserwacje na temat wpływu ruchu samochodowego, oddziaływującego na warstwę w czasie wiązania spojwa, podano w pracach amerykańskich [21,34]. Dotyczą one badań przeprowadzonych w Teksasie na 25 odcinkach nawierzchni, które poddano remontowi z zastosowaniem recyklingu na zimno, na miejscu. Jako spojwo stosowano cement lub wapno. Grubość warstwy po przetworzeniu wynosiła 25 cm. Ze względu na konieczność szybkiego oddania nawierzchni do ruchu, warstwę związaną cementem przykrywano niezwłocznie dwiema warstwami z MMA i kolejne sekcje oddawano sukcesywnie do eksploatacji po zakończeniu dnia pracy. Warstwa związana spojwem podlegała więc nieomal natychmiast oddziaływaniu ruchu. Żaden z badanych odcinków nie wykazywał z upływem czasu układu spękań, typowego dla odwzorowanych spękań skurczowych.

6.5. Warstwy pośrednie

Jednym ze sposobów umożliwiających minimalizację spękań odbitych jest stosowanie warstw pośrednich. Podstawowym zadaniem warstwy pośredniej, wykonanej między nowymi warstwami asfaltowymi, a warstwą w której istnieją
lub mogą pojawić się spękania poprzeczne, jest minimalizowanie niebezpieczeństwa odbijania się tych spękań w nakładce dzięki:

- kompensowaniu przemieszczeń występujących w spękanej warstwie, powodujących koncentrację naprężeń w obrębie wierzchołka istniejącego spękania,
- zredukowaniu koncentracji naprężeń na spodzie warstw asfaltowych dzięki użyciu w warstwie pośredniej materiału o dużej elastyczności lub porowatości.

Warstwy pośrednie, które mogą być stosowane w nawierzchniach półsztywnych to [2,4,7,9,10,22,24]:

1. warstwy SAMI (stress absorbing membrane interlayer),
2. cienkie warstwy z drobnoziarnistych MMA,
3. warstwy geowłóknin nasyconych asfaltem lub specjalne kompozyty na bazie geowłóknin,
4. warstwy niezwiązanego kruszywa.

Schemat wymienionych rozwiązań 1, 3 i 4 przedstawiono na rys. 6.17.

![Rys. 6.17. Schemat warstw pośrednich, które można zastosować w nawierzchniach półsztywnych.][10]

Rys 6.18. Wykonane warstwy SAMI. Rys. 6.19 Specjalna warstwa z drobnoziarnistej MMA ułożona w czasie remontu nawierzchni [40]

Warstwy geowłóknin nasyconych asfaltem są stosunkowo popularnym rodzajem warstwy pośredniej, stosowanym w czasie remontów spękanych nawierzchni. Rozwiązanie to może być użyteczne w opóźnieniu powstawania spęków odbitych, jednak technologia nie należy do łatwych, a podstawowym zagrożeniem jest nadmiernie osłabienie szczepności międzywarstwowej, które może skutkować przedwczesnymi zniszczeniami nawierzchni. Najczęściej nasycenie geowłókniny asfaltem następuje na drodze, wskutek rozłożenia jej na powierzchni warstwy skropionej lepiszczem, najczęściej emulsją asfaltową (rys. 6.20). Szczegółowy opis technologii i wymagania podano m.in. w pracach [2,5,23,24]. Według raportu [24] koszt omawianego rozwiązania wynosi około 30% w stosunku do ceny podbudowy. W remontach nawierzchni stosuje się również specjalne kompozyty, w przypadku których połączenie geowłókniny, niekiedy wzmocnionej siatką i asfaltu, najczęściej modyfikowanego elastomerem, następuje w zakładzie produkcyjnym (ISAC – interlayer stress absorbing composite) [5] (rys. 6.21).
Zastosowanie warstw pośrednich z geowłóknin nasycionych asfaltem wymienia się jako potencjalne rozwiązanie w wytycznych WT-5 [27] w przypadku nawierzchni z podbudową zasadniczą o wytrzymałości na ściskanie R_{28} w zakresie 5-10 MPa.

W celu ograniczenia spękań odbitych w nawierzchniach półsztywnych można również stosować tzw. „konstrukcje odwrócone”. Omówiono je krótko w p. 3.5.4. W konstrukcjach takich pomiędzy warstwą związaną spojwem a warstwami asfaltowymi ukuada się warstwę kruszywa [2,7,5,24]. Kluczową sprawą jest grubość warstwy. Nie może ona być zbyt duża, ponieważ moduł warstwy kruszywa jest znacznie mniejszy niż moduł, leżącego poniżej, materiału związanego spojwem. Z drugiej jednak strony zbyt cienka warstwa nie spełni swojej roli i będzie zbędnym praktycznie elementem w konstrukcji nawierzchni. Grubość stosowanych warstw podawana w literaturze jest różna i wynosi najczęściej 10+15 cm [2,24], choć spotyka się mniejsze wartości - 5+10 cm [10].

Podobnym rozwiązaniem jest wykorzystanie warstwy z porowatej MMA, określanej jako „Crack Relief Layer” (CRL). Warstwy takie stosuje się w Wielkiej Brytanii i USA w remontach nawierzchni betonowych, kiedy przewidziano ułożenie na płytach nowych warstw asfaltowych [5]. Porowata warstwa, o zawartości wolnych przestrzeni 20÷24% po zagęszczeniu i grubości kilku cm (rys. 6.22.) jest wbudowywana bezpośrednio na płytach betonowych, jako najniższa w pakiecie warstw asfaltowych. Według doświadczeń brytyjskich tego rodzaju warstwa, nawet o grubości 2 cm może być skuteczna w przeciwdziałaniu spękaniom odbitym nad szczelinami, o ile nawierzchnia betonowa jest stabilna, a w obrębie szczelin nie ma ruchów pionowych. W literaturze nie podaje się przykładów zastosowania tego rozwiązania w nowych nawierzchniach półsztywnych, choć co do zasady jest to rozwiązanie bardzo podobne do użycia.
warstwy kruszywa niezwiązanego, a grubość warstwy MMA może być mniejsza niż kruszywa.

Rys. 6.22. Warstwa CRL, asfaltowa o 20% zawartości wolnych przestrzeni

Studia literatury wskazują, że chociaż przedstawione warstwy pośrednie stanowią poprawny technicznie sposób przeciwdziałania spękaniom odbitym w nowych nawierzchniach półsztywnych, to jednak w praktyce stosuje się raczej rozwiązania omówione w p. 6.4., polegające na celowej inicjacji spękań w podbudowach związanych spośród. Prawdopodobnie przyczyną jest mniejszy koszt tych rozwiązań.

6.6. Podsumowanie

Przeprowadzone studia literatury, dotyczące problemu spękań odbitych w nawierzchniach półsztywnych pozwalają na sformułowanie następujących wniosków:

1. Spękania odbite stanowią istotny problem w utrzymaniu nawierzchni półsztywnych. Uważa się, że problem ten jest większy w przypadku nawierzchni, w których podbudowy charakteryzują się znaczną wytrzymałością, np. są wykonane z chudego betonu.
3. Spękania poprzeczne podbudów związanych cementem, będące przyczyną spękań odbitych, mają charakter spękań skurczowych. Ograniczenie skurczu, zarówno co do wielkości, jak i szybkości narastania wpływa więc na ograniczenie spękań odbitych.
4. Skurcz można zminimalizować przestrzegając prawidłowych zasad projektowania mieszanki stabilizowanej spoiwem, w szczególności co do ilości i rodzaju spoiwa.

5. Niebagatelnny wpływ na wielkość skurczu ma również przestrzeganie poprawnych zasady prowadzenia robót, w szczególności bardzo dobre zagęszczenie warstwy, kontrola wilgotności mieszanki oraz pielęgnacja warstwy.

6. Spękania odbite można ograniczyć stosując specjalne techniki przeciwsępkaniane. Można je podzielić na dwie grupy – ingerencja w warstwę podbudowy w czasie jej formowania lub bezpośrednio potem albo wykonywanie warstw pośrednich pomiędzy podbudową i warstwami z MMA.

7. ingerencja w warstwę podbudowy może polegać na wykonaniu rowków i szczelin w czasie formowania warstwy albo wykonywaniu w warstwie nacięć lub wprowadzeniu w niej mikrospękania po częściowym stwardnieniu.

8. Warstwy pośrednie, które mogą być stosowane w nawierzchniach półsztywnych to: warstwy SAMI, cienkie warstwy z drobnoziarnistych MMA, warstwy geowłóknin nasyconych asfaltem lub specjalne kompozyty na bazie geowłóknin oraz warstwy niezwiązanego kruszywa.

6.7. Literatura

[14] Scullion T., Field investigation: Pre-cracking of soil-cement bases to reduce reflective cracking., 2002 Annual Meeting of Transportation Research Board, USA.

[22] Thogersen F., Busch Ch., Henrichsen A., Mechanistic design of semi-rigid pavements. Danish Road Institute, Reprt 138, 2004

[40] VIASAF. *Reflective cracking resistant sand-asphalt.* Eurovia Vinci Technical Department, July 2002.
7. WSTĘPNE OBLICZENIA KONSTRUKCJI NAWIERZCHNI

Opracował: dr inż. Piotr Jaskuła

7.1. Metodyka obliczeniowa

W obliczeniach nawierzchni zastosowano metody mechanistyczne. Naprężenia i odkształcenia obliczano według teorii wielowarstwowej półprzestrzeni sprężystej. Zastosowano następujące kryteria zmęczeniowe:

1. Nawierzchnie podatne
- Kryteria spękań warstw asfaltowych:
 o Instytutu Asfaltowego USA 1982 (IA),
 o M-ENPDM AASHTO USA 2004 (ASHTO),
 o LCPC Francja 2002 (Francja).
- Deformacji strukturalnych podłoża gruntowego:
 o Instytutu Asfaltowego USA 1982 (IA),
 o LCPC Francja 2002 (Francja).

2. Nawierzchnie półsztywne
- Kryteria spękań warstw związanych spoiwem hydraulicznym:
 o Uniwersytetu Illinois (Dempsey) USA 1984,
 o Narodowy Instytut Badań Transportu i Dróg CSIR (DeBeer i Otte) RPA,
 o LCPC Francja 2002,
 o PCA USA (DG’08) 2008.
- Kryteria spękań warstw asfaltowych:
 o Instytutu Asfaltowego USA 1982,
 o MEPDM AASHTO 2004,
 o LCPC Francja 2002.
- Deformacji strukturalnych podłoża gruntowego:
 o Instytutu Asfaltowego USA 1982,
 o LCPC Francja 2002.

W przypadku obliczeń konstrukcji podatnych analizowano pracę nawierzchni w trzech sezonach (lato, jesień/wiosna, zima) przyjmując moduły warstw asfaltowych odpowiednio do średnich temperatur w każdym z tych sezonów. Stosowano liniową superpozycję szkód zmęczeniowych w każdej z warstw, w różnych porach roku.

W przypadku obliczeń konstrukcji półsztywnych po wykonaniu analiz porównawczych pracy nawierzchni w trzech sezonach i w jednej temperaturze ekwiwalentnej wybrano analizy dla jednej temperatury ekwiwalentnej dla różnych etapów pracy nawierzchni.
Dokładnie kryteria zniszczeń nawierzchni omówiono w pkt. 3.

7.1.1. Założenia do oceny trwałości konstrukcji nawierzchni

Stan przemieszczeń, naprężeń i odkształceń oraz trwałości zmęczeniowej konstrukcji nawierzchni określono przy następujących założeniach:

1. Konstrukcja nawierzchni spoczywa na podłożu gruntowym z grupy G1 i klasy nośności:
 a. min. 120 MPa
 b. min. 100 MPa
 c. min. 80 MPa.
2. Modelem nawierzchni jest wielowarstwowa półprzestrzeń sprężysta.
3. Istnieje pełna szczepność międzywarstwowa.
4. Obliczeniowym obciążeniem nawierzchni jest oś 100 kN.
5. Obciążenie od koła pojazdu przekazywane jest na nawierzchnię poprzez ślad kołowy o nacisku 850 kPa i obciążeniu 50 kN w czasie 0,02 s (prędkość poruszania się pojazdu to 60 km/h).
6. Moduł sztywności warstw asfaltowych zależy od temperatury (od pory roku lub jednej temperatury ekwiwalentnej).
7. Stałe materiałowe warstw asfaltowych przyjęto według metody SHELL.
8. Moduły sprężystości podłoża gruntowego i podbudowy nie zależą od temperatury.
9. Okres trwałości nawierzchni wynosi 30 lub 20 lat (odpowiednio dla dróg głównych i pozostałych).
10. Stan naprężeń, odkształceń i przemieszczeń w konstrukcji nawierzchni określono jak w wielowarstwowej półprzestrzeni sprężystej przy pomocy programu BISAR.
11. W podbudowach związanych spojem hydraulicznym występują spękania skurczowe (skurcz w czasie wiązania spoju oraz skurcz termiczny), które istotnie wpływają na koncentrację naprężeń i odkształceń w warstwach konstrukcji nawierzchni.
12. Dla nawierzchni półsztywnych uwzględniono dwa etapy pracy konstrukcji navierzchni, poza metodą PCA z 2008 r.:
 a. do spękania podbudowy (stałe materiałowe podbudowy jak dla warstw niespękanych),
 b. po spękaniu podbudowy (stałe materiałowe podbudów jak dla podbudowy spękanej, pracującej w postaci dużych bloków).
7.1.2. Kryteria obliczeniowe

Dla podbudów związanych spoiwem hydraulicznym zastosowano kryteria trwałości zmęczeniowej (opisane w pkt. 3) zależnej od następujących parametrów:

- Naprężenia lub odkształcenia rozciągającego na spodzie podbudowy,
- Dopuszczalnego naprężenia (wytrzymałość) lub dopuszczalnego odkształcenia rozciągającego przy zginaniu podczas obciążenia statycznego,
- Współczynnika transferu obciążeń LPEF,
- Przyjętego ryzyka zależnego od klasy drogi (LCPC Francja).

Dla mieszanek mineralno-asfaltowych zastosowano kryteria trwałości zmęczeniowej zależne od następujących parametrów:

- Poziomego odkształcenia rozciągającego na spodzie warstw asfaltowych,
- Modułu sztywności najniższej warstwy asfaltowej,
- Objętościowej zawartości asfaltu i wolnych przestrzeni w najniższej warstwie asfaltowej,
- Przyjętego ryzyka zależnego od klasy drogi (LCPC Francja),
- Charakterystyk zmęczeniowych warstw asfaltowych podbudowy (LCPC Francja).

Dla strukturalnych deformacji trwałych konstrukcji nawierzchni przyjęto kryterium zależne od pionowego odkształcenia na górze podłoża gruntowego.

7.1.2.1. Metoda Stowarzyszenia Cementu Portlandzkiego (PCA) do obliczania trwałości podbudów związanych spoiwem hydraulicznym

Dodatkowego omówienia wymaga zastosowanie w analizach obliczeniowych konstrukcji nawierzchni półsztywnych metody Stowarzyszenia Cementu Portlandzkiego (ang. Portland Cement Association, w skrócie PCA) z 2008 r. do obliczania trwałości zmęczeniowej warstw związanych cementem [9]. Zastosowane w metodzie kryterium zmęczeniowe jest w zasadzie kryterium spękania warstw związanych spoiwem hydraulicznym opublikowanym w metodzie AASHTO 2004 i opisanym w pkt. 3.4, ale wzbogaconym o współczynniki kalibracyjne β_{C1} i β_{C2}.

Wzór na obliczanie trwałości zmęczeniowej warstw związanych spoiwem hydraulicznym (ang. Chemically Stabilized Mixtures, w skrócie CSM) ma postać:

$$\log N_F = \frac{0,972\beta_{c1} - \left(\frac{\gamma_t}{MR}\right)}{0,0825 \cdot \beta_{c2}}$$ (1)
gdzie:

N_t – liczba powtarzalnych obciążeń do spękań zmęczeniowych w warstwie związanej spoiwem,

σ_t – maksymalne naprężenia rozciągające wywołane na spodzie warstwy CSM,

MR – wytrzymałość na zginanie warstwy, („Modulus of Rupture”).

β_{C1}, β_{C2} – terenowe współczynniki kalibracyjne,

W opublikowanej oryginalej metodzie AASHTO 2004 nie było współczynników kalibracyjnych. Jednocześnie oryginialna metoda AASHTO zaleca w obliczeniach uwzględnienie zmniejszania się modułu sprężystości warstwy związanej spoiwem w czasie eksploatacji nawierzchni półsztywnej w związku ze spękami warstwy (degradacją), jak i uwzględnienia współczynników zwiększających obliczone naprężenia rozciągające na spodzie warstwy związanej ze względu na spękania skurczowe.

Metoda obliczania trwałości warstw związanym zaproponowana przez PCA polega na [9]:
- zastosowaniu kryterium zmęczeniowego AASHTO 2004,
- zastosowaniu współczynników kalibracyjnych zaproponowanych przez PCA, które wynoszą: $\beta_{C1}=1,0645$ i $\beta_{C2}=0,9003$ dla stabilizacji cementem gruboziarnistych materiałów (ang. soil-cement granular) lub $\beta_{C1}=1,8985$ i $eta_{C2}=2,5580$ dla stabilizacji cementem drobnoziarnistych materiałów (ang. soil-cement fine-grained),
- nie zmniejszania modułu sztywności i wytrzymałości na rozciąganie przy zginaniu (modulus of rapture) podczas obliczeń konstrukcji,
- zastosowania redukcji obliczonej trwałości zmęczeniowej warstwy związanej do 25% (czterokrotna redukcja obliczonej wartości).

Zaproponowane ograniczenie obliczonej trwałości zmęczeniowej warstwy związanej do 25% jest dopuszczonym przez PCA poziomem szkody zmęczeniowej ze względu na brak wiedzy o rzeczywistym zachowaniu się warstwy, w zawiązku ze spękami skurczowymi [9].

7.1.3. Konstrukcje nawierzchni poddane analizie obliczeniowej

1. Przyjęto następujące grubości podbudów:
 a. Kruszywo stabilizowane mechanicznie 20 cm
 b. Kruszywo związane spoiwem hydraulicznym 16, 18, 20, 22 cm
 c. Beton asfaltowy grubość zmienna
d. Beton asfaltowy o wysokim module sztywności zmienna grubość
(obliczenia zostaną przedstawione w IV Etapie)

2. Dla każdego typu podbudowy przyjmowano grubość warstw asfaltowych:
 a. podbudowy związaną spoiwem hydr. 8, 13, 17, 21, 25 cm
 b. podbudowy niezwiązaną i asfaltową 8, 10, 12, 13, 14, 17, 19, 21, 23, 25, 27, 29, 31, 34, 38 cm
i obliczano trwałość zmęczeniową konstrukcji.

3. Założono następujący podział grubości warstw asfaltowych na warstwy technologiczne:
 a. 8 cm (4 cm warstwa ścieralna z betonu asfaltowego i 4 cm warstwa wzmacniająca z betonu asfaltowego)
 b. 10, 12, 13, 14 cm (5 cm warstwa ścieralna z betonu asfaltowego i 5-9 cm warstwa wzmacniająca z betonu asfaltowego)
 c. 17, cm (4 cm warstwa ścieralna z mastyksu grysowego SMA, 6 cm warstwa wiążąca z betonu asfaltowego, 7 cm warstwa podbudowy z betonu asfaltowego)
 d. 19, 21, 23, 25 cm (4 cm warstwa ścieralna z mastyksu grysowego SMA, 7 cm warstwa wiążąca z betonu asfaltowego, 8-14 cm warstwa podbudowy z betonu asfaltowego)
 e. 27, 31, 34, 38 cm (4 cm warstwa ścieralna z mastyksu grysowego SMA, 8 cm warstwa wiążąca z betonu asfaltowego, 15-26 cm warstwa podbudowy z betonu asfaltowego).

7.2. Założenia projektowe

7.2.1. Ruch obliczeniowy

Przyjęto obliczeniowe obciążenie osi pojedynczej równe 100 kN.

W przypadku obliczeń dla czterech temperatur przyjęto, że rozkład ruchu w poszczególnych okresach roku jest następujący:

- Okres zimowy (3 miesiące) 20%,
- Okres wiosny i jesieni (6 miesiące) 50%,
- Okres lata (3 miesiące) 30%.

7.2.2. Obciążenie

Przyjęto, że oś pojedyncza przekazuje obciążenie poprzez dwa pojedyncze koła, poprzez ślad zastępczy, kołowy o obciążeniu 50 kN i ciśnieniu kontaktowym 850 kPa.
7.2.3. Temperatura

Przyjęto, że średnia temperatura warstw nawierzchni (patrz pkt. 5) dla każdego z okresów roku jest następująca:

- Okres zimy +2°C,
- Okres wiosny i jesieni +14°C,
- Okres lata +24°C.

W przypadku obliczeń dla jednej temperatury ekwiwalentnej przyjęto temperaturę warstw nawierzchni równą +17°C.

7.2.4. Stałe materiałowe

7.2.4.1. Mieszanki mineralno-asfaltowe

Na podstawie analiz w pkt. 5, dotyczących występowania temperatur otoczenia w Polsce w ostatnich 30 latach, wyznaczono nowe wartości temperatur ekwiwalentnych dla warstw asfaltowych. Dla nowych temperatur ekwiwalentnych wyznaczono nowe wartości modułów sztywności warstw asfaltowych.

W tablicy 7.1 zestawiono nowe temperatury ekwiwalentne dla Polski, a w tablicach 7.2a, 7.2b zestawiono nowe moduły sztywności dla asfaltów i warstw asfaltowych wyznaczone na podstawie parametrów mieszanek mineralno-asfaltowych przyjętych w Etapie II [1].

Tablica 7.1. Nowe temperatury ekwiwalentne w Polsce, w zależności od typu konstrukcji nawierzchni

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Pora roku</th>
<th>Konstrukcja podatna</th>
<th>Konstrukcja półsztywna</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lato</td>
<td>+24°C</td>
<td>+25°C</td>
</tr>
<tr>
<td>2.</td>
<td>Wiosna/jesień</td>
<td>+13°C</td>
<td>+14°C</td>
</tr>
<tr>
<td>3.</td>
<td>Zima</td>
<td>+2°C</td>
<td>+2°C</td>
</tr>
<tr>
<td>4.</td>
<td>Cały rok</td>
<td>+17°C</td>
<td>+19°C</td>
</tr>
</tbody>
</table>

Do dalszych analiz obliczeniowych konstrukcji nawierzchni wybrano temperatury wyznaczone dla konstrukcji podatnej. Główne argumenty przemawiające za tym wyborem to:
- obliczenia konstrukcji półsztywnych obarczone jest już błędem ze względu na niedoskonałe kryteria, a podwyższanie temperatury prowadzi do pogrubiania konstrukcji,
- konstrukcje półsztywne w zestawieniu z konstrukcjami z innych krajów w obliczeniach za pomocą metodyki jaką dysponujemy są niedoceniane,
- nowe temperatury ekwiwalentne są podwyższone w stosunku do temperatur wykorzystywanych w obliczeniach do starego Katalogu z 1997.
Tablica 7.2a. Wybrane, średnie parametry asfaltów zwykłych produkowanych wg normy PN-EN 12591:2004 przez dwóch polskich producentów asfaltów [1] i wyliczone wg metody Shell (oprogramowanie Bands) moduły sztywności asfaltów

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Właściwość</th>
<th>Asfalty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20/30</td>
</tr>
<tr>
<td>1.</td>
<td>Penetracja po starzeniu</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td>Temperatura mięknięcia po starzeniu (RTFOT)</td>
<td>69</td>
</tr>
<tr>
<td>3.</td>
<td>Moduł sztywności (+2°C, t=0,02 s) obliczony wg Shell po starzeniu, [MPa]</td>
<td>378</td>
</tr>
<tr>
<td>4.</td>
<td>Moduł sztywności (+13°C, t=0,02 s) obliczony wg Shell po starzeniu, [MPa]</td>
<td>147</td>
</tr>
<tr>
<td>5.</td>
<td>Moduł sztywności (+24°C, t =0,02 s) obliczony wg Shell po starzeniu, [MPa]</td>
<td>47,6</td>
</tr>
<tr>
<td>6.</td>
<td>Moduł sztywności (+17°C, t=0,02 s) obliczony wg Shell po starzeniu, [MPa]</td>
<td>97,5</td>
</tr>
<tr>
<td>7.</td>
<td>Moduł sztywności (+19°C, t=0,02 s) obliczony wg Shell po starzeniu, [MPa]</td>
<td>79,0</td>
</tr>
</tbody>
</table>
Tablica 7.2b. Obliczone wg Shella moduły sztywności wybranych mieszanek mineralno-ASFALTOWYCH wg WT-2 2010 z zastosowaniem ASFALTów zwykłych dla czasu obciążenia t=0,02 s

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rodzaj mieszanki</th>
<th>Zawartości objętościowe [% (v/v)]</th>
<th>Moduł sztywności [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>asfalt</td>
<td>wolnych przestrzeni</td>
</tr>
<tr>
<td>1</td>
<td>Mastyks grysowy, SMA8, SMA11 (tylko asfalt modyfikowany)</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Beton asfaltowy do warstwy wiążącej, AC16W, AC22W z asfalem 35/50</td>
<td>10,5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Beton asfaltowy do warstwy podbudowy, AC16P, AC22P, AC32P z asfalem 35/50</td>
<td>9,5</td>
<td>7/8</td>
</tr>
<tr>
<td>4</td>
<td>Beton asfaltowy o wysokim module sztywności do warstwy podbudowy i wiąjącej, ACWMS11, ACWMS16 z asfalem 20/30</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Beton asfaltowy do warstwy ścieralnej, AC8S, AC11S z asfalem 50/70</td>
<td>13,5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Mastyks grysowy, SMA8, SMA11 z asfalem 50/70</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Beton asfaltowy do warstwy wiążącej, AC16W, AC22W z asfalem 35/50</td>
<td>10,5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Beton asfaltowy do warstwy podbudowy, AC16P, AC22P, AC32P z asfalem 35/50</td>
<td>9,5</td>
<td>7/8</td>
</tr>
<tr>
<td>9</td>
<td>Beton asfaltowy do warstwy ścieralnej, AC8S, AC11S z asfalem 50/70</td>
<td>14</td>
<td>2,5</td>
</tr>
<tr>
<td>10</td>
<td>Beton asfaltowy do warstwy wiążącej, AC11W, AC16W z asfalem 50/70</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>Beton asfaltowy do warstwy podbudowy, AC16P, AC22P z asfalem 50/70</td>
<td>10</td>
<td>7/8</td>
</tr>
</tbody>
</table>
W obliczaniu trwałości zmęczeniowej wg kryterium spękań warstw asfaltowych zgodnie z francuską metodą wykorzystano dodatkowe dane, które zestawiono w tablicy 7.3.

Tablica 7.3. Dodatkowe dane dla mieszanek mineralno-asfaltowych niezbędne w obliczeniach wg metody francuskiej

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Mieszanka</th>
<th>ε6</th>
<th>-1/b</th>
<th>SN</th>
<th>Sh [cm]</th>
<th>Cc</th>
<th>E(10°C) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Podbudowa asfaltowa KR3-6 (GB3)</td>
<td>90</td>
<td>5</td>
<td>0,3</td>
<td>1-2,5</td>
<td>1,3</td>
<td>12 300</td>
</tr>
<tr>
<td>3.</td>
<td>Beton asfaltowy do warstwy wiążącej KR1-6 (BBS/BBSG)</td>
<td>100</td>
<td>5</td>
<td>0,25</td>
<td>1</td>
<td>1,1</td>
<td>7 200</td>
</tr>
<tr>
<td>4.</td>
<td>Beton asfaltowy do warstwy ścieralnej KR1-2 (BBM)</td>
<td>100</td>
<td>5</td>
<td>0,25</td>
<td>1</td>
<td>1,1</td>
<td>7 200</td>
</tr>
<tr>
<td>5.</td>
<td>SMA (Mastic Asphalt)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>Beton asfaltowy o wysokim module sztywności (EME2)</td>
<td>130</td>
<td>5</td>
<td>0,25</td>
<td>1-2,5</td>
<td>1,0</td>
<td>17 000</td>
</tr>
</tbody>
</table>

7.2.4.2. Podbudowa z kruszywa stabilizowana mechanicznie

Przyjęto następujące wartości stałych materiałowych warstwy podbudowy z kruszywa stabilizowanego mechanicznie o wskaźniku nośności CBR>80% i spełniającej wymagania WT-4 2010 [4]:
- moduł sprężystości E=400 MPa,
- współczynnik Poissona ν=0,3.

7.2.4.3. Podbudowa z kruszywa związana spoiwem hydraulicznym

Zgodnie z obowiązującymi przepisami technicznymi, to jest WT-5 [5] założono, że podbudowa (leżąca bezpośrednio pod warstwami asfaltowymi) zostanie wykona z mieszanek kruszywa związanej spoiwem hydraulicznym o wytrzymałościach:

- C3/4, C5/6 i C8/10 w przypadku cementu odpowiednio dla poszczególnych kategorii ruchu KR1-2, KR3-4, KR5-6,
- C3/4, C6/8 i C9/12 w przypadku popiołu i spoiva drogowego odpowiednio dla poszczególnych kategorii ruchu KR1-2, KR3-4, KR5-6
- C3/4 w przypadku żużla tylko dla ruchu KR1.

W oparciu o charakterystyki materiałów związanych cementem oraz braki charakterystyk dla materiałów związanych popiołem i spoiwem drogowym przyjęto jednakowe wartości stałych materiałowych w danej klasie wytrzymałości dla wszystkich warstw podbudów z kruszyw związanych spoiwem hydraulicznym. Zestawienie przyjętych stałych materiałowych przedstawiono w tablicy 7.4.
Tablica 7.4. Zestawienie stałych materiałowych dla podbudów z kruszyw związanych spoiwem hydraulicznym

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Klasa wytrzymałość</th>
<th>I faza pracy, przed spękaniem</th>
<th>II faza pracy, po spękaniu</th>
<th>Współczynnik Poissona</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E [MPa]</td>
<td>v [-]</td>
<td>E [MPa]</td>
</tr>
<tr>
<td>1.</td>
<td>C3/4</td>
<td>4800</td>
<td>0,25</td>
<td>2000</td>
</tr>
<tr>
<td>2.</td>
<td>C5/6 (C6/8)</td>
<td>7200</td>
<td>0,25</td>
<td>2500</td>
</tr>
<tr>
<td>3.</td>
<td>C8/10 (C9/12)</td>
<td>15120</td>
<td>0,25</td>
<td>3000</td>
</tr>
</tbody>
</table>

W kryterium francuskim moduł sprężystości dla podbudowy związanej spoiwem hydraulicznym w II fazie pracy (po spękaniu) był równy 1/5 wartości modułu sprężystości w I fazie (przed spękaniem). Wartości modułów w I fazie pracy były zgodne z tablicą 7.4.

W obliczaniu trwałości zmęczeniowej wg kryterium spękań warstw związanych spoiwem hydraulicznym zgodnie z francuską metodą wykorzystano dodatkowe dane, które zestawiono w tablicy 7.5.

Tablica 7.5. Dodatkowe dane dla mieszanek z kruszywa связаного spoiwem hydraulicznym niezbędne w obliczeniach wg metody francuskiej

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Rodzaj mieszanki</th>
<th>σ6 [MPa]</th>
<th>-1/b</th>
<th>SN</th>
<th>Sh [cm]</th>
<th>Kc</th>
<th>Kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C3/4</td>
<td>0,38</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>C5/6</td>
<td>0,57</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>C8/10</td>
<td>0,95</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>1.4</td>
<td>1</td>
</tr>
</tbody>
</table>

7.2.4.4. Podłoże gruntowe

Obliczenia wykonano dla ulepszonego podłoża, dla trzech klas nośności. Dla poszczególnych klas nośności przyjęto następujące moduły sprężystości i współczynniki Poissona:
- min. 120 MPa E=120 MPa, v=0,35,
- min. 100 MPa E=100 MPa, v=0,35,
- min. 80 MPa E = 80 MPa, v=0,35.

Przyjęto w obliczeniach, że podłoże gruntowe należące do grup nośności G1, G2, G3 i G4 zostanie doprowadzone do jednej z trzech klas nośności poprzez wykonanie dodatkowych warstw konstrukcji. Zostanie to przedstawione w ostatecznym raporcie.
7.2.5. Schemat obliczeniowy

W obliczeniach przyjęto następujące schematy obliczeniowe konstrukcji nawierzchni podatnej (rys. 7.1) i półsztywnej (rys. 7.2).

Rysunek 7.1. Schemat obliczeniowy konstrukcji nawierzchni podatnej

Rysunek 7.2. Schemat obliczeniowy konstrukcji nawierzchni półsztywnej
7.2.6. Uwzględnienie faz pracy warstwy podbudowy związanej spojwem hydraulicznym

W obliczeniach założono, że konstrukcja nawierzchni z podbudową związaną spojwem hydraulicznym pracuje w dwóch fazach:

Faza I
Wszystkie warstwy konstrukcji są nie spękane.
Faza II
Spękana jest warstwa związana spojwem hydraulicznym. Warstwy asfaltowe są nie spękane.

Moment zniszczenia nawierzchni
Spękanie warstw asfaltowych i/lub krytyczne deformacje strukturalne.

Całkowita trwałość zmęczeniowa konstrukcji nawierzchni półsztywnej jest sumą szkód zmęczeniowych dla poszczególnych faz pracy nawierzchni według zasady Minera.

Koncentracja naprężeń i odkształceń w konstrukcji nawierzchni półsztywnej z powodu spękań skurczowych warstwy związanej spojwem hydraulicznym w kryteriach Dempseya, Otte, De Beer została uwzględniona poprzez:

- zwiększenie naprężeń/odkształceń rozciągających na spodzie warstw związanych spojwem hydraulicznym poprzez przemnożenie przez współczynnik LPEF (ang. load placement efficiency factor):
 - 1,25 dla klasy wytrzymałości do C5/6 włącznie,
 - 1,40 dla klasy wytrzymałości od C8/10 włącznie,
- zwiększenie odkształceń rozciągających na spodzie warstw asfaltowych poprzez przemnożenie przez współczynnik 1,1.

7.3. Wyniki wstępnych obliczeń

7.3.1. Konstrukcje podatne z podbudową z kruszywa mineralnego

Na podstawie wstępnych obliczeń wyznaczono dla danej kategorii ruchu graniczne (maksymalne i minimalne) grubości warstw asfaltowych konstrukcji nawierzchni podatnej z podbudową z kruszywa o grubości 20 cm. Obliczenia przeprowadzono dla trzech klas nośności ulepszonego podłoża gruntowego: 100, 120 i 80 MPa. Wyniki zestawiono w tablicy 7.6. Wyniki prezentowano w kolejności umożliwiającej porównywanie do konstrukcji w starym katalogu, które obliczane były dla ulepszonego podłoża 100 MPa.

Szczegółowe wyniki wstępnych obliczeń konstrukcji nawierzchni podatnych z podbudową z kruszywa mineralnego przedstawiono na rysunkach od 7.3 do 7.5.

Na rysunku 7.6 zestawiono obliczone konstrukcje podatne i konstrukcje podatne katalogowe z Polski, Austrii i Niemiec.
Tablica 7.6. Zestawienie obliczonych konstrukcji nawierzchni podatnych z podbudową z kruszywa mineralnego o CBR>80% dla poszczególnych nośności podłoża (zestawione wielkości dotyczą grubości warstw asfaltowych w cm)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Francja</td>
<td>8</td>
<td>10,5</td>
<td>10,5</td>
<td>15,5</td>
<td>15,5</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>IA</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=5%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>15,5</td>
<td>15,5</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=10%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>AASHTO (FC=15%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>12,5</td>
<td>12,5</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Francja</td>
<td>8</td>
<td>10,5</td>
<td>10,5</td>
<td>15,5</td>
<td>15,5</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>IA</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=5%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>15,5</td>
<td>15,5</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=10%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>AASHTO (FC=15%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>12,5</td>
<td>12,5</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Podbudowa KSM, 20 cm, podłoże 100 MPa

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Francja</td>
<td>8</td>
<td>10,5</td>
<td>10,5</td>
<td>15,5</td>
<td>15,5</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>IA</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=5%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>15,5</td>
<td>15,5</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=10%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>AASHTO (FC=15%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>12,5</td>
<td>12,5</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Podbudowa KSM, 20 cm, podłoże 120 MPa

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Francja</td>
<td>8</td>
<td>10,5</td>
<td>10,5</td>
<td>15,5</td>
<td>15,5</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>IA</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=5%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>15,5</td>
<td>15,5</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=10%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>AASHTO (FC=15%)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>12,5</td>
<td>12,5</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Podbudowa KSM, 20 cm, podłoże 80 MPa

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Francja</td>
<td>8</td>
<td>10,5</td>
<td>10,5</td>
<td>15,5</td>
<td>15,5</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>IA</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=5%)</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>AASHTO (FC=10%)</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>19,5</td>
<td>19,5</td>
</tr>
<tr>
<td>AASHTO (FC=15%)</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>18,5</td>
<td>18,5</td>
</tr>
</tbody>
</table>
Rysunek 7.3. Trwałości zmęczeniowe konstrukcji podatnej z podbudową z kruszywa mineralnego o CBR>80% i grubości 20 cm na podłożu gruntowym o E≥100 MPa obliczone według różnych kryteriów.
Rysunek 7.4. Trwałości zmęczeniowe konstrukcji podatnej z podbudową z kruszywa mineralnego o CBR>80% i grubości 20 cm na podłożu gruntowym o $E \geq 120$ MPa obliczone według różnych kryteriów.
Rysunek 7.5. Trwałości zmęczeniowe konstrukcji podatnej z podbudową z kruszywa mineralnego o CBR>80% i grubości 20 cm na podłożu gruntowym o E≥80 MPa obliczone według różnych kryteriów
Rysunek 7.6. Trwałości zmęczeniowe konstrukcji podatnej z podbudową z kruszywa mineralnego o CBR>80% i grubości 20 cm na podłożu gruntowym o E≥100 MPa obliczone według różnych kryteriów wraz konstrukcjami katalogowymi z Austrii i Niemiec.
7.3.2. Konstrukcje podatne tylko z warstw asfaltowych (ang. full depth)

Na podstawie wstępnych obliczeń wyznaczono dla danej kategorii ruchu graniczne (maksymalne i minimalne) grubości warstw asfaltowych konstrukcji nawierzchni podatnej typu Full-Depth. Obliczenia przeprowadzono dla trzech klas nośności ulepszonego podłoża gruntowego: 100, 120 i 80 MPa. Wyniki zestawiono w tablicy 7.7. Wyniki prezentowano w kolejności umożliwiającej porównywanie do konstrukcji w starym katalogu, które obliczane były dla ulepszonego podłoża 100 MPa.

Szczegółowe wyniki wstępnych obliczeń konstrukcji nawierzchni podatnych z tylko z warstw asfaltowych (full-depth) przedstawiono na rysunkach od 7.8 do 7.10.

Na rysunku 7.11 zestawiono obliczone konstrukcje podatne i konstrukcje podatne katalogowe z Polski, Niemiec i Wielkiej Brytanii.

Tablica 7.7. Zestawienie obliczonych konstrukcji nawierzchni podatnych tylko z warstw asfaltowych (Full-Depth) dla poszczególnych nośności podłoża (zestawione wielkości dotyczą grubości warstw asfaltowych w cm)

<table>
<thead>
<tr>
<th>Kryterium</th>
<th>Francja</th>
<th>IA</th>
<th>AASHTO (FC=5%)</th>
<th>AASHTO (FC=10%)</th>
<th>AASHTO (FC=15%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>KR2</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>KR3</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>KR4</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>KR5</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>KR6</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>KR7</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>

Tablica 7.7. Zestawienie obliczonych konstrukcji nawierzchni podatnych tylko z warstw asfaltowych (Full-Depth) dla poszczególnych nośności podłoża (zestawione wielkości dotyczą grubości warstw asfaltowych w cm)

<table>
<thead>
<tr>
<th>Kryterium</th>
<th>Francja</th>
<th>IA</th>
<th>AASHTO (FC=5%)</th>
<th>AASHTO (FC=10%)</th>
<th>AASHTO (FC=15%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>KR2</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>KR3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>KR4</td>
<td>18,5</td>
<td>18,5</td>
<td>18,5</td>
<td>18,5</td>
<td>18,5</td>
</tr>
<tr>
<td>KR5</td>
<td>18,5</td>
<td>18,5</td>
<td>18,5</td>
<td>18,5</td>
<td>18,5</td>
</tr>
<tr>
<td>KR6</td>
<td>25,5</td>
<td>25,5</td>
<td>25,5</td>
<td>25,5</td>
<td>25,5</td>
</tr>
<tr>
<td>KR7</td>
<td>25,5</td>
<td>25,5</td>
<td>25,5</td>
<td>25,5</td>
<td>25,5</td>
</tr>
</tbody>
</table>

Tablica 7.7. Zestawienie obliczonych konstrukcji nawierzchni podatnych tylko z warstw asfaltowych (Full-Depth) dla poszczególnych nośności podłoża (zestawione wielkości dotyczą grubości warstw asfaltowych w cm)

<table>
<thead>
<tr>
<th>Kryterium</th>
<th>Francja</th>
<th>IA</th>
<th>AASHTO (FC=5%)</th>
<th>AASHTO (FC=10%)</th>
<th>AASHTO (FC=15%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>KR2</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
</tr>
<tr>
<td>KR3</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
</tr>
<tr>
<td>KR4</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>KR5</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>KR6</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>KR7</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

Tablica 7.7. Zestawienie obliczonych konstrukcji nawierzchni podatnych tylko z warstw asfaltowych (Full-Depth) dla poszczególnych nośności podłoża (zestawione wielkości dotyczą grubości warstw asfaltowych w cm)

<table>
<thead>
<tr>
<th>Kryterium</th>
<th>Francja</th>
<th>IA</th>
<th>AASHTO (FC=5%)</th>
<th>AASHTO (FC=10%)</th>
<th>AASHTO (FC=15%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>KR2</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
</tr>
<tr>
<td>KR3</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
</tr>
<tr>
<td>KR4</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>KR5</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>KR6</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>KR7</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

Tablica 7.7. Zestawienie obliczonych konstrukcji nawierzchni podatnych tylko z warstw asfaltowych (Full-Depth) dla poszczególnych nośności podłoża (zestawione wielkości dotyczą grubości warstw asfaltowych w cm)

<table>
<thead>
<tr>
<th>Kryterium</th>
<th>Francja</th>
<th>IA</th>
<th>AASHTO (FC=5%)</th>
<th>AASHTO (FC=10%)</th>
<th>AASHTO (FC=15%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>KR2</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
</tr>
<tr>
<td>KR3</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
<td>15,5</td>
</tr>
<tr>
<td>KR4</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>KR5</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>KR6</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>KR7</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>
Rysunek 7.7. Trwałości zmęczeniowa konstrukcji podatnej tylko z warstw asfaltowych na podłożu gruntowym o $E \geq 100$ MPa obliczone według różnych kryteriów.

Grubość warstw asfaltowych [cm] vs Trwałość zmęczeniowa konstrukcji [osie 100 kN]
Rysunek 7.8. Trwałości zmęczeniowe konstrukcji podatnej tylko z warstw asfaltowych na podłożu gruntowym o $E \geq 120$ MPa obliczone według różnych kryteriów.
Rysunek 7.9. Trwałości zmęczeniowe konstrukcji podatnej tylko z warstw asfaltowych na podłożu gruntowym o $E \geq 80$ MPa obliczone według różnych kryteriów.
Rysunek 7.10. Trwałości zmęczeniowe konstrukcji podatnej tylko z warstw asfaltowych na podłożu gruntowym o
E≥100 MPa obliczone według różnych kryteriów oraz konstrukcje katalogowe Niemiec i Wielkiej Brytanii
7.3.3. Konstrukcje półsztywne

Na podstawie wstępnych obliczeń wyznaczono dla danej kategorii ruchu graniczne (maksymalne i minimalne) grubości warstw asfaltowych konstrukcji nawierzchni półsztywnej z podbudową z kruszywa związanego spoiwem hydraulicznym o grubościach 16, 18, 20 i 22 cm i wytrzymalościach C3/4, C5/6, C8/10. Obliczenia przeprowadzono dla jednej klasy nośności ulepszonego podłoża gruntowego 100 MPa. Wyniki zestawiono w tablicach 7.8, 7.9 i 7.10.

Szczegółowe wyniki wstępnych obliczeń konstrukcji nawierzchni półsztywnych z podbudową z kruszywa związanego spoiwem hydraulicznym przedstawiono na rysunkach od 7.11 do 7.24.

Na rysunkach od 7.25 do 7.27 zestawiono grubości zastępcze obliczonych konstrukcji półsztywnych i grubości zastępcze z przeliczenia konstrukcji półsztywnych katalogowych z Polski, Niemiec i Wielkiej Brytanii.

Uwagi:

1. Na rysunkach pojawia się dodatkowo kryterium De Beera, którego nie ma w tablicach zestawieniowych. Powodowane jest to tym, że obliczenia przeprowadzono dla wszystkich znanych nam kryteriów, lecz analizy są przeprowadzane już bez uwzględnienia kryterium De Beera, gdyż uzyskane wyniki znacząco odbiegają od pozostałych kryteriów.

2. Na rysunkach i w tablicach pojawiają się przy opisach kryteriów Dempsey, Otte i DeBeera oznaczenia (s) i (n). Dodatkowe oznaczenia wynikają z tego, że wykonano obliczenia dla II etapu podbudowy związanego spoiwem hydraulicznym wg nowo przyjętych wartości-module (n), jak i wartości zbliżonych do wartości przyjętych przy obliczaniu starego katalogu (s).

3. Opis na rysunkach Dempsey, Otte lub DeBeer bez dodatkowej literki (n) lub (s) odpowiada oznaczeniu jak z literką (n), czyli dla nowo przyjętych wartości modułów w II etapie pracy podbudowy.

4. Linie wynikowe na rysunkach oznaczone cienką linią odpowiadają oznaczeniom (s), natomiast grube linie odpowiadają oznaczeniom (n).
Tablica 7.8. Zestawienie obliczonych konstrukcji nawierzchni półsztywnych z podbudową z kruszywa związanego spoiwem hydraulicznym o wytrzymałości C3/4 dla nośności podłoża 100 MPa w zależności od grubości podbudowy związanej (zestawione wielkości dotyczą grubości warstw asfaltowych w cm)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><0,09 min</td>
<td>0,09-0,51 min</td>
<td>0,51-2,5 min</td>
<td>2,5-7,3 min</td>
<td>7,3-14,6 min</td>
<td>14,6-35 min</td>
<td>>35 min</td>
</tr>
<tr>
<td>Francja</td>
<td>Podbudowa C3/4, 16 cm, podłoże 100 MPa</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td></td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Otte</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>DG’08</td>
<td></td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Francja</td>
<td>Podbudowa C3/4, 18 cm, podłoże 100 MPa</td>
<td>8</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td></td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Otte</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>DG’08</td>
<td></td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>min</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Francja</td>
<td>Podbudowa C3/4, 20 cm, podłoże 100 MPa</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td></td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Otte</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>DG’08</td>
<td></td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>min</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>8</td>
<td>12,5</td>
<td>12,5</td>
<td>17</td>
<td>17</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Francja</td>
<td>Podbudowa C3/4, 22 cm, podłoże 100 MPa</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9,5</td>
<td>9,5</td>
<td>13</td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Otte</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DG’08</td>
<td></td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>min</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>16</td>
<td>16</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

Kryterium KR1: <0,09 min
Kryterium KR2: 0,09-0,51 min
Kryterium KR3: 0,51-2,5 min
Kryterium KR4: 2,5-7,3 min
Kryterium KR5: 7,3-14,6 min
Kryterium KR6: 14,6-35 min
Kryterium KR7: >35 min

Podbudowa C3/4, 16 cm, podłoże 100 MPa
Podbudowa C3/4, 18 cm, podłoże 100 MPa
Podbudowa C3/4, 20 cm, podłoże 100 MPa
Podbudowa C3/4, 22 cm, podłoże 100 MPa

Francja
Dempsey (n)
Dempsey (s)
Otte
DG’08

min, max - wartości minimalne i maksymalne.
Tablica 7.9. Zestawienie obliczonych konstrukcji nawierzchni półśtywnych z podbudową z kruszywa związanego spojem hydraulicznym o wytrzymałości C5/6 dla nośności podłoża 100 MPa w zależności od grubości podbudowy związanej (zestawione wielkości dotyczą grubości warstw asfaltowych w cm)

<table>
<thead>
<tr>
<th>Kryterium</th>
<th>Podbudowa C5/6, 16 cm, podłoże 100 MPa</th>
<th>Podbudowa C5/6, 18 cm, podłoże 100 MPa</th>
<th>Podbudowa C5/6, 20 cm, podłoże 100 MPa</th>
<th>Podbudowa C5/6, 22 cm, podłoże 100 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td><0,09 mln</td>
<td>0,09-0,51 mln</td>
<td>0,51-2,5 mln</td>
<td>2,5-7,3 mln</td>
<td>7,3-14,6 mln</td>
</tr>
<tr>
<td>Francja</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td>8</td>
<td>11,5</td>
<td>11,5</td>
<td>16</td>
</tr>
<tr>
<td>Otte</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DG’08</td>
<td>10</td>
<td>12,5</td>
<td>12,5</td>
<td>16</td>
</tr>
<tr>
<td>min</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>max</td>
<td>10</td>
<td>12,5</td>
<td>12,5</td>
<td>16</td>
</tr>
<tr>
<td>Francja</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Otte</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DG’08</td>
<td>8</td>
<td>10,5</td>
<td>10,5</td>
<td>12</td>
</tr>
<tr>
<td>min</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>max</td>
<td>8</td>
<td>10,5</td>
<td>10,5</td>
<td>15</td>
</tr>
<tr>
<td>Francja</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Otte</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DG’08</td>
<td>8</td>
<td>8,5</td>
<td>8,5</td>
<td>10</td>
</tr>
<tr>
<td>min</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>max</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Francja</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Otte</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DG’08</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>min</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>max</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>
Tablica 7.10. Zestawienie obliczonych konstrukcji nawierzchni półsztywnych z podbudową z kruszywa związanego spojem hydraulicznym o wytrzymałości C8/10 dla nośności podłoża 100 MPa w zależności od grubości podbudowy związanej (zestawione wielkości dotyczą grubości warstw asfaltowych w cm)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><0,09 min</td>
<td>0,09-0,51 min</td>
<td>0,51-2,5 min</td>
<td>2,5-7,3 min</td>
<td>7,3-14,6 min</td>
<td>14,6-35 min</td>
<td>>35 min</td>
</tr>
<tr>
<td>Francja</td>
<td>Podbudowa C8/10, 16 cm, podłoże 100 MPa</td>
<td>8 8 8 8 8 10 10 13 15 15 18,5 18,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td>8 8 8 8 8 10 10 13 15 15 17,5 17,5 22 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td>8 10 10 15 15 20 20 23 24 24 26 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otte</td>
<td>8 8 8 8 8 12 12 15 15 15 17,5 17,5 24 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG’08</td>
<td>8 9 9 10,5 10,5 12 12 13 13 14 14 15 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>8 8 8 8 8 10 10 13 13 14 14 15 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>8 10 10 15 15 20 20 23 24 24 26 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podbudowa C8/10, 18 cm, podłoże 100 MPa</td>
<td>8 8 8 8 8 10 10 13 13 15 15 18,5 18,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francja</td>
<td>8 8 8 8 9 11 11 13 13 16,5 16,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td>8 8 8 8 10 10 13,5 13,5 16 16 19,5 19,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td>8 9 9 14 14 18 18 18 20,5 20,5 22 24 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otte</td>
<td>8 8 8 8 8 10 10 13,5 13,5 16 16 23 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG’08</td>
<td>8 8 8 8 8 14 14 18 18 20,5 20,5 22 24 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>8 8 8 8 9 9 11 11 12 12 13 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>8 9 9 14 14 18 18 20,5 20,5 22 24 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podbudowa C8/10, 20 cm, podłoże 100 MPa</td>
<td>8 8 8 8 8 10,5 10,5 11,5 11,5 14 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francja</td>
<td>8 8 8 8 8 12,5 12,5 16 16 18,5 18,5 20 20 22 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td>8 8 8 8 12,5 12,5 16 16 18,5 18,5 20 20 22 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td>8 8 8 8 8,5 8,5 12 12 15 15 20,5 20,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otte</td>
<td>8 8 8 8 8 8,5 8,5 9,5 9,5 9,5 9,5 11 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG’08</td>
<td>8 8 8 8 8 8,5 8,5 11 11 11 11 11 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>8 8 8 8 8 8 8 8 8,5 8,5 9,5 9,5 9,5 9,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>8 8 8 8 12,5 12,5 16 16 18,5 18,5 20 20 22 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podbudowa C8/10, 22 cm, podłoże 100 MPa</td>
<td>8 8 8 8 8 10 10 11 11 12 12 12 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francja</td>
<td>8 8 8 8 10,5 10,5 12,5 12,5 12,5 17,5 17,5 20 20 20 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dempsey (n)</td>
<td>8 8 8 8 11 11 14 14 16 16 18 18 20 20 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dempsey (s)</td>
<td>8 8 8 8 11 11 14 14 16 16 18 18 20 20 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otte</td>
<td>8 8 8 8 8 8 8 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG’08</td>
<td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>8 8 8 8 11 11 14 14 16 16 18 18 20 20 20 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rysunek 7.11. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spoiwem hydraulicznym C3/4 o grubości 16 cm na podłożu gruntowym o E ≥ 100 MPa obliczone według różnych kryteriów.
Rysunek 7.12. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spośród hydraulicznym C3/4 o grubości 18 cm na podłożu gruntowym o $E \geq 100$ MPa obliczone według różnych kryteriów.
Rysunek 7.13. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spojwem hydraulicznym C3/4 o grubości 20 cm na podłożu gruntowym o E ≥ 100 MPa obliczone według różnych kryteriów.
Na wszystkich rysunkach z obliczeniami konstrukcji półsztywnych wg kryterium francuskiego oznaczenia osi są następujące:

- Oś pionowa – grubość warstw asfaltowych [cm]
- Oś pozioma – trwałość zmęczeniowa konstrukcji nawierzchni [osi 100 kN]

Na wykresach wynikowych obliczanych wg kryterium francuskiego linie nie jest ciągła, gdyż zmienia się współczynnik ryzyka, który zależy jest od kategorii ruchu.

Rysunek 7.14. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spośród hydraulicznym C3/4 o grubości 16, 18, 20 cm na podłożu gruntowym o E≥100 MPa obliczone według kryterium francuskiego
Rysunek 7.15. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spojem hydraulicznym C5/6 o grubości 16 cm na podłożu gruntowym o $E \geq 100$ MPa obliczone według różnych kryteriów.
Rysunek 7.16. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego społem hydraulicznym C5/6 o grubości 18 cm na podłożu gruntowym o E≥100 MPa obliczone według różnych kryteriów.
Rysunek 7.17. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spojewem hydraulicznym C5/6 o grubości 20 cm na podłożu gruntu o E ≥ 100 MPa obliczone według różnych kryteriów
Rysunek 7.18. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spojwem hydraulicznym C5/6 o grubości 22 cm na podłożu gruntowym o $E \geq 100$ MPa obliczone według różnych kryteriów.
Rysunek 7.19. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spojwem hydraulicznym C5/6 o grubości 16, 18, 20 i 22 cm na podłożu gruntowym o $E \geq 100$ MPa obliczone według kryterium francuskiego
Rysunek 7.20. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spojem hydraulicznym C8/10 o grubości 16 cm na podłożu gruntowym o $E \geq 100$ MPa obliczone według różnych kryteriów.
Rysunek 7.21. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spoiwem hydraulicznym C8/10 o grubości 18 cm na podłożu gruntowym o $E \geq 100$ MPa obliczone według różnych kryteriów.
Rysunek 7.22. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spojem hydraulicznym C8/10 o grubości 20 cm na podłożu gruntowym o $E \geq 100$ MPa obliczone według różnych kryteriów.
Rysunek 7.23. Trwałości zmęczeniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spoiwem hydraulicznym C8/10 o grubości 22 cm na podłożu gruntowym o $E \geq 100$ MPa obliczone według różnych kryteriów.
Rysunek 7.24. Trwałości zmięsceniowe konstrukcji półsztywnej z podbudową z kruszywa związanego spoiwem hydraulicznym C8/10 o grubości 16, 18, 20 i 22 cm na podłożu grunto wym o E ≥100 MPa obliczone według kryterium francuskiego
Rysunek 7.25. Grubości zastępcze dla konstrukcji półsztywnej z podbudową z kruszywa związewanego spoiwem hydraulicznym C3/4 na podłożu gruntowym o E≥100 MPa uzyskane z obliczeń i z przeliczenia konstrukcji katalogowych wybranych krajów
Rysunek 7.26. Grubości zastępcze dla konstrukcji półsztywnej z podbudową z kruszywa związanego spoiwem hydraulicznym C5/6 na podłożu gruntowym o E ≥ 100 MPa uzyskane z obliczeń i z przeliczenia konstrukcji katalogowych wybranych krajów.
Rysunek 7.27. Grubości zastępcze dla konstrukcji półsztywnej z podbudową z kruszywa związanego spoiwem hydraulicznym C8/10 na podłożu gruntowym o $E \geq 100$ MPa uzyskane z obliczeń i z przeliczeń konstrukcji katalogowych wybranych krajów.
7.4. Podsumowanie wyników wstępnych obliczeń

Przy obliczaniu konstrukcji nawierzchni zastosowano szereg nowych elementów i założeń, które powodują, że porównywanie wstępnych wyników obliczeń i konstrukcji katalogowych może być niejednoznaczne. Do tych nowych elementów i założeń przy wstępnych obliczeniach można zaliczyć zmiany w zakresie:

1. parametrów obciążenia, poprzez zwiększenie ciśnienia kontaktowego koła z 650 kPa do 850 kPa,
2. temperatur ekwiwalentnych, poprzez podwyższenie tych temperatur z (-2°, +10°, +23°C) do (+2°C, +14°, +24°C), co skutkuje zmianami sztywności warstw asfaltowych (obniżenie sztywności),
3. nośności ulepszonego podłoża, poza obliczanym 100 MPa dodano nowe klasy nośności 120 i 80 MPa, które uwzględniono w pełnych obliczeniach,
4. właściwości fizycznych warstw asfaltowych,
5. materiałów do warstw związanych spojem hydraulicznym, zastosowano materiały o wyższych sztywnościach i wyższych wytrzymałościach na rozciąganie,
6. obliczeń konstrukcji podatnych i półsztywnych według nowych kryteriów, a półsztywne dodatkowo według nowych założeń:
 a. w zakresie pracy warstwy w II etapie - podwyższono moduły warstwy spękanej,
 b. w zakresie pracy warstwy w I etapie - różnicowano wielkość współczynnika LPEF w zależności od sztywności warstwy; wyższy stosowano dla najwyższych wytrzymałości, a niższy dla niższych wytrzymałości.

Wstępne obliczenia konstrukcji nawierzchni będą przedmiotem dalszych analiz i przedstawionych rezultatów nie należy traktować jako ostateczne. Mogą one ulec zmianie w przypadku zmiany jakiegokolwiek elementu w procedurze obliczeniowej.

7.4.1. Konstrukcje podatne z podbudową z kruszywa

1. Wykonane obliczenia konstrukcji podatnych z podbudową z kruszywa i ulepszonym podłożem o nośności 100 MPa z wykorzystaniem kryteriów Instytutu Asfaltowego (IA), metody francuskiej i AASHTO FC=5% pokazują zbliżone grubości warstw asfaltowych do konstrukcji katalogowych. W zakresie kategorii ruchu KR5 i KR6 obliczone konstrukcje są nawet grubsze od konstrukcji katalogowych.

4. Konstrukcje obliczone wg kryterium AASHTO FC=10% i FC=15% są cieńsze od konstrukcji katalogowych polskich i jednocześnie zbliżone do konstrukcji katalogowych niemieckich i austriackich (patrz rys. 7.6).

5. Zwiększenie nośności ulepszonego podłoża do 120 MPa nieznacznie wpływa na grubość konstrukcji obliczonych wg kryterium IA oraz AASHTO. Wyniki obliczeń dają możliwość pocienienia o 1 cm grubości warstw asfaltowych.

7. Obliczone grubości warstw asfaltowych przy ulepszonym podłożu 80 MPa są grubsze w stosunku do nawierzchni z ulepszonym podłożem 100 MPa, jak i nawierzchni katalogowych o 1-2 cm w zakresie kategorii ruchu KR1-KR2. W szczególności można to zaobserwować przy wynikach obliczonych według kryterium francuskiego, dla którego uzyskano najgrubsze nawierzchnie. W stosunku do pozostałych kryteriów są grubsze o 1 cm.

7.4.2. Konstrukcje podatne tylko z warstw asfaltowych (Full-Depth)

2. Obliczenia wykonane wg kryterium AASHTO FC=10% i FC=15% wskazują na możliwość pocienienie konstrukcji katalogowych o 2-3 cm grubości warstw asfaltowych w całym zakresie ruchu.

3. Zwiększenie nośności ulepszonego podłoża do 120 MPa umożliwia pocienienie obliczonych konstrukcji o 1 cm warstw asfaltowych w stosunku do nawierzchni z ulepszonym podłożem 100 MPa.

4. Zmniejszenie nośności ulepszonego podłoża do 80 MPa ze 100 MPa nie wpływa istotnie na obliczone grubości konstrukcji (patrz tablica 7.7). Zmiany grubości są w zakresie 0,5 cm.

7.4.3. Konstrukcje półsztywne z podbudową z mieszanki związanej spoiwem hydraulicznym

1. Obliczone grubości konstrukcji nawierzchni półsztywnych z podbudową z warstw związanych spoiwem hydraulicznym i z ulepszonym podłożem 100 MPa są istotnie cieńsze od konstrukcji katalogowych w zakresie ruchu KR3-KR6, porównując podbudowę o wytrzymałości C3/4 z Rm=5 MPa, jak i C5/6 z chudym betonem.

3. Porównując grubości zastępcze obliczonych konstrukcji (przy uwzględnieniu spękań w duże bloki, jak i w małe bloki) i konstrukcji katalogowych z Niemiec, Austrii i Wielkiej Brytanii można zaobserwować podobieństwo w przypadku konstrukcji z podbudową związaną spoiwem o wytrzymałości C3/4 i C5/6. Natomiast porównanie grubości zastępczych konstrukcji z podbudową o wytrzymałość C8/10 (przy uwzględnieniu spękań w duże bloki) z konstrukcjami katalogowymi wskazuje, że obliczone konstrukcje są cieńsze od katalogowych.

7.5. Literatura

Załącznik nr 1

Wartości liczbowe współczynników liczbowych \(a', b', c' \) i \(d' \) funkcji matematycznych stosowanych przy wyznaczaniu współczynników równoważności obciążenia osi w metodzie Politechniki Gdańskiej.
Tablice 1,2,3. Współczynniki liczbowe a', b' i c', dla nawierzchni podatnych w zależności od przyjętego kryterium zniszczenia nawierzchni, ciśnienia w ogumieniu, kategorii ruchu oraz rodzaju opon.

<table>
<thead>
<tr>
<th>KR1</th>
<th>Koła pojedyncze</th>
<th>Koła podwójne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciśnienie 650 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0,5147415089</td>
<td>-0,4157501420</td>
</tr>
<tr>
<td>b</td>
<td>1,6496996467</td>
<td>3,8209891387</td>
</tr>
<tr>
<td>c</td>
<td>0,0005102403</td>
<td>-0,0035758141</td>
</tr>
<tr>
<td>Ciśnienie 850 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0,5290252395</td>
<td>-0,350959423</td>
</tr>
<tr>
<td>b</td>
<td>1,7651194739</td>
<td>3,9429957952</td>
</tr>
<tr>
<td>c</td>
<td>0,1852248243</td>
<td>0,0667418001</td>
</tr>
<tr>
<td>Ciśnienie 1000 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0,5376337542</td>
<td>-0,3106142116</td>
</tr>
<tr>
<td>b</td>
<td>1,8355848692</td>
<td>4,0091265347</td>
</tr>
<tr>
<td>c</td>
<td>0,2901694962</td>
<td>0,1026750223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KR3</th>
<th>Koła pojedyncze</th>
<th>Koła podwójne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciśnienie 650 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0,5261207473</td>
<td>-0,2209928040</td>
</tr>
<tr>
<td>b</td>
<td>2,2127742582</td>
<td>4,1528956910</td>
</tr>
<tr>
<td>c</td>
<td>-0,0005942828</td>
<td>-0,0024684170</td>
</tr>
<tr>
<td>Ciśnienie 850 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0,5006905599</td>
<td>-0,1790255649</td>
</tr>
<tr>
<td>b</td>
<td>2,3424027271</td>
<td>4,2205915921</td>
</tr>
<tr>
<td>c</td>
<td>0,1173254102</td>
<td>0,0324369366</td>
</tr>
<tr>
<td>Ciśnienie 1000 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0,4798238467</td>
<td>-0,1537729230</td>
</tr>
<tr>
<td>b</td>
<td>2,4207525402</td>
<td>4,2573351687</td>
</tr>
<tr>
<td>c</td>
<td>0,1813972942</td>
<td>0,0496618018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KR6</th>
<th>Koła pojedyncze</th>
<th>Koła podwójne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciśnienie 650 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0,3374794137</td>
<td>-0,1389049904</td>
</tr>
<tr>
<td>b</td>
<td>2,7471507184</td>
<td>4,2807559787</td>
</tr>
<tr>
<td>c</td>
<td>-0,0025947222</td>
<td>-0,0018213269</td>
</tr>
<tr>
<td>Ciśnienie 850 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0,2869625296</td>
<td>-0,1027853150</td>
</tr>
<tr>
<td>b</td>
<td>2,8446321598</td>
<td>4,3294691833</td>
</tr>
<tr>
<td>c</td>
<td>0,0552019460</td>
<td>0,0195274339</td>
</tr>
<tr>
<td>Ciśnienie 1000 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0,2570607927</td>
<td>-0,0973771650</td>
</tr>
<tr>
<td>b</td>
<td>2,8978450276</td>
<td>4,3455532860</td>
</tr>
<tr>
<td>c</td>
<td>0,0849093699</td>
<td>0,0299516939</td>
</tr>
</tbody>
</table>
Tablice 4,5,6. Współczynniki liczbowe a', b', c' i d', dla nawierzchni podatnych w zależności od przyjętego kryterium zniszczenia nawierzchni, ciśnienia w ogumieniu, kategorii ruchu oraz rodzaju opon.

<table>
<thead>
<tr>
<th>KR1</th>
<th>Koła pojedyncze</th>
<th>Koła podwójne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fj cem. I</td>
<td>Fj cem. I</td>
</tr>
<tr>
<td>Ciśnienie 650 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>4,5073749311</td>
<td>4,8923799081</td>
</tr>
<tr>
<td>b</td>
<td>15,7416046087</td>
<td>14,8392653001</td>
</tr>
<tr>
<td>c</td>
<td>21,8481259036</td>
<td>19,2535668213</td>
</tr>
<tr>
<td>d</td>
<td>-0,0012350442</td>
<td>-1,5842791428</td>
</tr>
<tr>
<td>Ciśnienie 850 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>5,9039897510</td>
<td>6,6827183256</td>
</tr>
<tr>
<td>b</td>
<td>18,5512592366</td>
<td>17,5401793527</td>
</tr>
<tr>
<td>c</td>
<td>24,0177260733</td>
<td>20,968634518</td>
</tr>
<tr>
<td>d</td>
<td>0,6654970584</td>
<td>-1,038559220</td>
</tr>
<tr>
<td>Ciśnienie 1000 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>6,8745887826</td>
<td>6,5275081996</td>
</tr>
<tr>
<td>b</td>
<td>20,3487721561</td>
<td>18,0692615351</td>
</tr>
<tr>
<td>c</td>
<td>25,2909779577</td>
<td>21,842563478</td>
</tr>
<tr>
<td>d</td>
<td>1,0313188228</td>
<td>-0,7051863855</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KR3</th>
<th>Koła pojedyncze</th>
<th>Koła podwójne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fj cem. I</td>
<td>Fj cem. I</td>
</tr>
<tr>
<td>Ciśnienie 650 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>4,1011725157</td>
<td>2,8534981563</td>
</tr>
<tr>
<td>b</td>
<td>10,9809972495</td>
<td>7,4514978899</td>
</tr>
<tr>
<td>c</td>
<td>12,6583021552</td>
<td>8,747585961</td>
</tr>
<tr>
<td>d</td>
<td>0,0006501658</td>
<td>-1,1786565796</td>
</tr>
<tr>
<td>Ciśnienie 850 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>4,9090446351</td>
<td>3,5006210748</td>
</tr>
<tr>
<td>b</td>
<td>12,2820479281</td>
<td>8,4068624196</td>
</tr>
<tr>
<td>c</td>
<td>13,4397002711</td>
<td>9,3463269889</td>
</tr>
<tr>
<td>d</td>
<td>0,1975892472</td>
<td>-1,5186560534</td>
</tr>
<tr>
<td>Ciśnienie 1000 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>5,3797022012</td>
<td>3,4798444946</td>
</tr>
<tr>
<td>b</td>
<td>13,0149151550</td>
<td>8,5992691752</td>
</tr>
<tr>
<td>c</td>
<td>13,8619491486</td>
<td>9,6436329868</td>
</tr>
<tr>
<td>d</td>
<td>0,3000241442</td>
<td>-1,3965414838</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KR6</th>
<th>Koła pojedyncze</th>
<th>Koła podwójne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fj cem. I</td>
<td>Fj cem. I</td>
</tr>
<tr>
<td>Ciśnienie 650 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3,3474463534</td>
<td>2,0865952079</td>
</tr>
<tr>
<td>b</td>
<td>7,9584261001</td>
<td>5,2387133855</td>
</tr>
<tr>
<td>c</td>
<td>8,3540421910</td>
<td>5,9497215360</td>
</tr>
<tr>
<td>d</td>
<td>0,0004649479</td>
<td>-0,9025696802</td>
</tr>
<tr>
<td>Ciśnienie 850 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3,7735087518</td>
<td>2,4688402462</td>
</tr>
<tr>
<td>b</td>
<td>8,5916550845</td>
<td>5,8139251122</td>
</tr>
<tr>
<td>c</td>
<td>8,6970844046</td>
<td>6,316197907</td>
</tr>
<tr>
<td>d</td>
<td>0,0798363062</td>
<td>-0,7845281405</td>
</tr>
<tr>
<td>Ciśnienie 1000 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3,9990054007</td>
<td>2,4322538448</td>
</tr>
<tr>
<td>b</td>
<td>8,9261235574</td>
<td>5,9212515290</td>
</tr>
<tr>
<td>c</td>
<td>8,8754788544</td>
<td>6,499723147</td>
</tr>
<tr>
<td>d</td>
<td>0,1198433245</td>
<td>-0,7135590543</td>
</tr>
</tbody>
</table>